首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
综述了近年来国内外关于锰酸锌(ZnMn_2O_4)作为锂离子电池负极材料的研究进展。重点探讨了改善ZnMn_2O_4电化学性能的几种方法,即电极材料纳米化、表面包覆、碳材料复合。在此基础上还简要介绍了ZnMn_2O_4全电池的研究进展。最后对今后要重点开展的研究工作进行了展望。  相似文献   

2.
本文通过对粉体Si进行球磨,结合在球磨产物中引入柠檬酸并对其进行碳热分解处理,制备了一种低碳高SiO_x含量的Si@SiO_x@C复合材料。采用现代材料分析测试技术和电化学测试技术,研究了500~700℃的碳热分解处理温度对复合材料的结构和其作为锂离子电池负极材料的电化学性能的影响。研究结果表明,不同温度获得的复合材料均为微米/亚微米尺寸的Si核外包覆有不同厚度的SiO_x及碳的Si@SiO_x@C颗粒,其中650℃条件下制得的复合材料中SiO_x和碳的含量分别约为55wt%和10wt%。该复合材料作为负极材料,表现出优于其它温度下获得的复合材料的结构和电化学性能,其在不再额外添加碳导电剂的条件下,在300 mA/g充放电时的首次库伦效率为74%,经200次循环后的容量为776mAh/g,容量保持率达75%。该低碳含量的微米/亚微米尺寸的Si基负极材料振实密度高,对于获得高体积比容量的电池极具使用潜力。  相似文献   

3.
通过球磨的方法制备了锂离子电池铌锡锑三元合金负极材料。用XRD、TEM和电化学测试对材料进行了表征,用非原位XRD测试研究了材料的反应机理。所制备的铌锡锑三元合金材料颗粒粒径大小分布在2~5μm之间。在充放电电压为1.5V到0V范围内,初始可逆充电容量为568mAh/g,经过20周的循环后,充电容量保持为初始容量的59.2%。由于铌锡锑材料中非活性物质Nb的作用,在相同条件下,与锡锑二元合金负极材料相比,其贮锂容量和循环性能都有明显的提高。  相似文献   

4.
将碳纳米管用于锂离子电池负极材料,用循环伏安及充放电实验研究了电极的性能.结果表明,碳纳米管用作锂离子电池负极,具有较高的储锂容量,首次放电容量达560mAh/g,但首次不可逆容量损失也大,高达430mAh/g.经过第1次充放电的容量损失后,随后各次的容量损失很小,碳纳米管的循环性能趋于稳定.  相似文献   

5.
以Al-20Si合金为原料制备多孔硅粉体材料和多孔硅/石墨烯复合材料,并将其用作锂离子电池的负极材料。采用盐酸浸蚀合金的方法制备多孔硅粉体材料,通过借助超声向硅基材料中分别添加不同含量的石墨烯(0,5%,10%,15%,20%,25%)制备多孔硅/石墨烯复合材料。实验结果显示,在多孔硅基材料中添加10%石墨烯的电化学性能最好,首次充放电容量为2 552 mAh/g,最后稳定在540 mAh/g。首次充放电效率为78.5%,循环至第5次后,后续充放电过程中效率维持在98%左右。石墨烯添加量超过10%后。随着添加量的增加性能逐渐下降。石墨烯的加入会使充放电比容量有所降低,但会使硅的循环稳定性增加。  相似文献   

6.
《新材料产业》2005,(2):76-77
我国锰酸锂合成技术及用该技术生产的锰酸锂材料达到国际先进水平。这是以戴永年院士为组长的专家组对“锂离子电池正极材料锰酸锂的合成”项目鉴定后得出的一致结论。  相似文献   

7.
张龙飞  江琦 《材料导报》2017,31(Z1):164-168, 177
石墨烯复合材料因具有高比表面积、高比容量、优异的导电性、显著的化学稳定性,在锂离子电池领域具有巨大的应用前景。在负极复合材料中,石墨烯不仅可以形成导电网络提升复合材料的导电性能,而且还可以缓冲材料在充放电过程中的体积效应,提高了材料的倍率性能和循环寿命,为设计大容量高稳定性的锂离子电池提供了理论保证。因此制备不同组成和结构的石墨烯复合材料是一个非常有价值的课题。对近年来国内外运用不同方法制备不同组成和结构的石墨烯复合材料的研究结果做了综合评述和展望。  相似文献   

8.
石墨烯及其复合材料作为锂离子电池负极材料的研究进展   总被引:1,自引:0,他引:1  
石墨烯作为一种锂离子电池负极材料表现出优异的电化学性能。本文介绍了石墨烯负极材料、金属/石墨烯复合材料、金属氧化物/石墨烯复合材料和其他石墨烯复合材料的研究现状,阐述了石墨烯作为负极材料的优越性,展望了石墨烯及其复合复合材料在锂离子电池负极材料中的应用前景。  相似文献   

9.
采用纳米铜粉为原材料,通过直接在空气气氛中氧化的方法制备了含有微量Cu的纳米CuO/Cu复合材料作为锂离子电池负极材料。采用XRD、SEM、TEM等材料结构分析方法和恒电流充放电测试技术对在250~500℃不同氧化温度下获得产物的结构和电化学性能进行研究。研究结果表明,在250~500℃下氧化4小时,纳米Cu粉基本氧化为CuO,其含量在94wt.%以上,并保持初始Cu粉的纳米尺寸。经250~450℃氧化的产物中有微量的Cu(3~4wt.%)保留下来,而500℃氧化的样品中未发现有Cu。用该方法制备的纳米CuO/Cu作为锂离子电池负极材料表现出良好的循环稳定性,其中,经450℃氧化的材料表现出最高的循环稳定性。经8个循环活化后,容量达到423mAh/g,经80次循环后,容量保持有377mAh/g,容量保持率接近90%。  相似文献   

10.
胡宪伟  田义凡  文佳 《功能材料》2021,52(7):137-142
通过前驱体MIL-88热解制备出具有碳壳包覆的纺锤状Fe2 O3纳米粒子(Fe2 O3@C).当用来作为锂离子电池的负极材料时,这种具有碳包覆的Fe2 O3纳米粒子不仅可以促进电极与电解液的接触、调节循环测试所引起的体积变化,而且可以提高电极的导电性.得益于这种独特的碳包覆的框架结构,该复合材料展示出1350 mAh/...  相似文献   

11.
研究了非晶碳纳米管作为锂离子电池负极材料的电化学行为以及氧化处理对其嵌锂容量的影响. 结果表明:在20mAh·g-1的充放电条件下,原始非晶碳纳米管首次可逆容量为305mAh·g-1;在300-450℃氧化处理后,非晶碳纳米管中的氧和氢氧根中和了管壁中的大量不饱和键,非晶碳纳米管中死锂的位置减少,纯度提高,嵌锂可逆容量增加.在300℃氧化处理的非晶碳纳米管首次可逆容量最高可达533mAh·g-1,并有良好的循环寿命.  相似文献   

12.
用球磨-热解法制备了锂离子电池碳包覆磷酸锰铁锂正极材料。通过XRD、TEM和电化学测试对材料进行了表征。所制备的材料平均粒径为100nm,碳在材料表面包覆均匀,包覆的碳层厚度约为2~3nm。在650℃下热解制备的LiMn0.5Fe0.5PO4正极材料具有最佳的电化学性能,其第一周的可逆容量为153.3mAh/g,经过50周的循环以后,可逆容量保持不变。材料在2.0C恒流放电时,放电容量仍然保持在121mAh/g左右,具有较优的倍率性能。  相似文献   

13.
MSb2型金属间化合物作为锂离子电池负极材料的研究   总被引:6,自引:0,他引:6  
采用真空悬浮熔炼与高能球磨制备了MSb2(M=Co和Fe)型合金粉末,利用恒电流电池测试仪研究了其电化学性能。研究发现CoSb2和FeSb2电极的嵌/脱锂平台均在0.8和1.0V左右;在20mA/g电流密度下的首次嵌锂反应的可逆容量为430mAh/g;电流密度为100mA/g条件下,CoSb2首次嵌锂反应的可逆容量为380mAh/g,FeSb2首次嵌锂反应的可逆容量340mAh/g。所以,MSb2型金属锑化物可以作为锂离子电池负极材料的侯选材料。,Sb-based inter-metallic compounds(MSb2) were prepared by levitation melting and milled by high-energy ball-mill.Experiments show that the plateaus of lithium ion insertion and extraction were at about 0.8 and 1.0V. Their reversible capacities are all about 430mAh/g and their cycle lives are almost same during the cycling at the current density of 20mA/g.But at the current density of 100mA/g they both have a little difference in the cycle life.The materials show the superior properties and can be considered as a candidater for the anode materials of lithium ion batteries.  相似文献   

14.
Inorganic Materials - Mesoporous lithium cobalt titanate powder with the spinel structure, potentially attractive as an anode material for lithium ion batteries, has been prepared by...  相似文献   

15.
锂离子电池正极材料LiMn2O4的研究进展   总被引:6,自引:0,他引:6  
具有尖晶石相的LiMn2O4因价格低、无毒、无环境污染、制备简单、研究较成熟,因此有着很好的应用前景,被看作最有可能成为新一代商用锂离子二次电池正极材料.由于LiMn2O4电化学循环稳定性能不好,表现在可逆容量衰减较大,尤其在高温下(>55℃)使用衰减更严重,从而限制了它的商业化应用.经过近十几年的研究,人们对其衰减机理有了比较清晰的了解,提出了造成容量衰减的几种可能原因如Jahn-Teller畸变效应、Mn2+在电解质中的溶解、出现稳定性较差的四方相以及电解质的分解等.通过掺杂、表面包覆、制备工艺的改进,人们已能制得循环稳定性能较好的尖晶相材料.本文结合我们研究小组的最新研究成果对锂离子二次电池正极材料LiMn2O4的最新研究进展进行综述和评论.  相似文献   

16.
软化学法合成锂离子电池负极材料Li4Ti5O12的研究进展   总被引:2,自引:0,他引:2  
Li4Ti5O12作为锂离子电池负极材料,在Li嵌入和脱出的过程中,其晶型不发生改变,被公认为"零应变"材料,具有优良的循环性能和使用寿命.详细地评迷了蒸发溶剂法、Sol-gel法及水热法等软化学法合成Li4Ti5O12的制备工艺及研究现状,并比较了它们的优缺点,探讨了Li4Ti5O12的未来发展方向.  相似文献   

17.
二氧化锡纳米材料具有毒性小、成本低、可逆容量高等优点,是当前研究最为广泛的锂离子动力电池负极材料之一。构建与碳复合的二氧化锡基纳米结构是缓解二氧化锡在长时间的嵌/脱锂循环过程中体积膨胀、控制纳米颗粒团聚问题以及增加材料导电性的有效方法。用高效、可控的静电纺丝技术,结合高温煅烧、水热合成、化学沉积等方法,可制备出结构型二氧化锡/碳复合纳米纤维。本文讨论了具有不同碳层分布的均匀型、核壳型及三明治型结构的二氧化锡/碳复合纳米纤维的制备方法,以及不同碳层分布对其锂电性能的改善状况及机理分析。  相似文献   

18.
采用氢氧化物共沉淀法制备出Ni0.43Mn0.57(OH)2前驱体,与Li2CO3混合制备了锂离子电池正极材料Li1.07Ni0.4Mn0.53O2,利用SEM、XRD对所得试样的形貌和晶体结构进行了表征,并研究了材料的电化学性能。结果表明:950℃下保温16h所得Li1.07Ni0.4Mn0.53O2具有良好的倍率性能和循环稳定性,2.75~4.2V、90mA/g(0.5C)下Li1.07Ni0.4Mn0.53O2的首次放电比容量达到127.11mAh/g,100次循环后容量保持率为98.99%。  相似文献   

19.
锂离子电池 Si-Mn/C负极材料的电化学性能   总被引:6,自引:0,他引:6  
利用机械球磨法得到Si和Mn原子比为3:5的复合材料,将此材料与20 wt%的石墨混合球磨得到Si3Mn5/C复合材料.利用X射线衍射(XRD)和扫描电子显微镜(SEM)分析材料的物相和电极的微观结构.结果表明:所得材料中没有Si-Mn二元新相的生成,材料的颗粒尺寸为0.5—2.0μm.碳的加入抑制了活性中心Si在循环过程中的较大结构变化,且Si—Mn复合物颗粒均匀地分散在碳的网格中,增加了复合材料的电接触.合成样品的电化学测试表明, 石墨的添加提高了Si-Mn复合材料的可逆容量和循环性能. Si-Mn/C复合物的首次可逆容量为347mAh·g-1,充放电效率为70%.进而经200℃热处理的Si-Mn/C电极的首次可逆容量为 463mAh·g-1,充放电效率为70%.在30个循环后复合材料仍保持426mAh·g-1的可逆容量, 充放电效率稳定在97%以上.  相似文献   

20.
采用循环伏安、交流阻抗和充放电测试等研究了使用LiBC_2O_4F_2基电解液的LiFePO_4/Li电池(LiBC_2O_4 F_2电池)和使用LiPF_6基电解液的LiFePO_4/Li电池(LiPF_6电池)的电化学性能.结果表明,常温下LiBC_2O_4 F_2电池和LiPF_6电池的循环伏安曲线都只有1对对应于Fe~(2+)/Fe~(3+)的氧化还原峰,但是高温下LiPF_6电池的氧化还原峰分裂为多个氧化还原峰,而LiBC_2O_4F_2电池的氧化还原峰却与常温下类似,说明LiBC_2O_4F_2电池在高温下工作能保持较好的稳定性.常温下LiBC_2O_4F_2电池的初始放电容量比LiPF_6电池低,但其具有较高的容量保持率,而且在高温下具有比LiPF_6电池更高的放电容量和更优良的循环性能,如经过50次循环后,LiBC_2O_4F_2电池的容量保持率为92.5%,而LiPF_6电池的容量保持率为78.4%.交流阻抗图谱也表明,使用LiBC_2O_4F_2电池在高温下电池的界面电荷传输反应阻抗比室温下有所下降,说明其具有良好的高倍率性能和高温循环性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号