首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
本文在低压弱浮力环境中模拟了微重力过载电流时导线绝缘层的着火先期过程,研究了压力对绝缘层着火先期特性的影响。结果表明,2 A时,绝缘层的温升率和最终平衡温度随压力降低而不断增大,模拟出了微重力下绝缘层的温升特性;10 A时,随着压力降低,绝缘层存在三种破坏机制;在不同区域压力对着火延迟时间的影响不同。最后,提高环境氧气浓度修正了低压对化学反应速率的抑制。结果表明,当压力在一定范围内降低时,随着氧气浓度的提高,绝缘层的着火极限范围拓宽,着火延迟时间缩短,可以初步模拟微重力下绝缘层的着火先期过程。  相似文献   

2.
为理解不同典型参数对无烟煤着火特性的影响,本文建立了单颗粒煤粉着火模型。基于主要的总包非均相反应和气相反应及相应的对流和传热传质规律,模拟O_2/N_2燃烧方式下煤粉颗粒的着火过程,研究了不同的气流温度、O_2浓度、对流条件等关键因素对无烟煤颗粒着火的影响特征,结果表明气流温度增加时煤粉颗粒着火延迟时间在不同对流条件下普遍变短,且温度较高时着火延迟时间对对流强度变化的响应有所减弱;在相同气流温度和O_2浓度条件下,气流对流强度处于较低水平时,其变化对着火延迟时间的影响相对明显;当气流的温度和对流条件一定时,O_2浓度增加则着火延迟时间变短,但影响较小。模型得到文献数据的有效检验。  相似文献   

3.
本文通过搭建McKenna型燃烧系统研究生物质颗粒的燃烧特性。基于数字图像处理技术分别研究氧浓度、流量和颗粒尺寸对生物质颗粒燃烧特征和挥发分火焰特征的影响。研究表明,随着氧浓度的增加,生物质颗粒的着火延迟时间、挥发分燃烧时间和碳燃烧时间均呈现下降趋势。挥发分火焰时均面积随着氧浓度的增加而减小,挥发分火焰时均平均亮度随着氧浓度的增加而增加。流量对生物质颗粒燃烧特性的影响与氧浓度的影响相似,而颗粒长度对生物质颗粒燃烧特性的影响与氧浓度和流量的影响相反。  相似文献   

4.
在一维炉上采用煤粉作为再燃燃料进行了脱硝的实验研究,发现脱硝效率随再燃区氧浓度的增大呈现非单调的变化规律.采用煤粉气流均相着火模型和炭粒非均相热力着火模型对煤粉再燃脱硝效率与其着火状态的相互作用进行了研究.煤粉均相着火之前,脱硝效率随氧浓度的增加而上升,均相着火之后,脱硝效率明显下降并逐渐达到一个谷点.氧浓度进一步增大时,煤粉发生非均相着火,颗粒温度升高,异相脱硝效率升高,它的作用开始占优,总体脱硝效率再次上升.  相似文献   

5.
本文采用基元反应模拟H2-O2(N2)混合气体的着火过程,得到了不同散热和不同燃料-氧化剂初始浓度比条件下着火临界曲线。结果表明: H2/O2摩尔比相同时,不同散热条件下的着火临界曲线非常相似,可近似看成同一曲线在第二区的“延伸线”上滑移。临界曲线第二区的P—T关系符合2k1=ks[Ms]。散热对着火极限的影响和着火延迟时间有密切关系,在临界曲线第二区延迟时间最小,导致散热对该区的影响最弱,从而使着火临界曲线非常相似。  相似文献   

6.
轻组份燃料对乳化油蒸发与着火影响的研究   总被引:5,自引:0,他引:5  
本文研究了较组份添加剂对单滴乳化油着火规律的影响。实验采用挂滴法。实验中,测量了体积比为十二烷:正庚烷:水6:0:4,5:1:4,4:2:4,3:3:4的着火延迟时间。实验结果和数值计算表明,在乳化油中加入易挥发添加剂能有效缩短乳化油的着火延迟时间,着火延迟时间随着添加剂加入量的增加而缩短,当易挥发添加剂含量较大时,着火延迟随着添加剂加入量的增加,变化越来越缓慢。这一结果对解决在掺水量大的条件下保证柴油机中乳化燃料的正常点火与启动具有实用价值。  相似文献   

7.
采用三维CFD模型模拟了直喷柴油机缸内喷雾燃烧过程,模拟缸压曲线得到了实验的验证.通过高温区与喷嘴之间的稳定距离来确定柴油机火焰浮起长度,研究在不同进气条件下火焰浮起长度的变化情况.该模型成功地预测了火焰浮起长度随着初始进气压力的增大而减少,随着进气温度的升高出现先增大后减少的趋势.同时模拟了在不同EGR率下柴油机缸内燃烧情况,发现火焰浮起长度和燃料着火延迟时间都随EGR率的增加而增大.  相似文献   

8.
本文分别建立了含有本征SiGe层的SiGe HBT(异质结双极晶体管)集电结耗尽层各区域的电势、电场分布模型,并在此基础上,建立了集电结耗尽层宽度和延迟时间模型,对该模型进行了模拟仿真,定量地分析了SiGe HBT物理、电学参数对集电结耗尽层宽度和延迟时间的影响,随着基区掺杂浓度和集电结反偏电压的提高,集电结耗尽层延迟时间也随之增大,而随着集电区掺杂浓度的提高和基区Ge组分增加,集电结耗尽层延迟时间随之减小. 关键词: SiGe HBT 集电结耗尽层 延迟时间  相似文献   

9.
在75%和96%两个不同的稀释度下,测量了乙烯/氧气/氩气混合气的着火延迟时间,实验当量比为1,压力为1.3-3.0 atm,温度为1092-1743 K.实验结果表明,着火延迟时间的对数与温度倒数呈良好的线性关系,在两个稀释度下,着火延迟时间随着温度增加而减少.通过回归分析,得到了乙烯着火关联式.计算得乙烯着火延迟在96%稀释度时是75%稀释度的5倍.采用分子硬球碰撞模型,计算了不同稀释度下,乙烯与氧分子的碰撞次数,在96%稀释度下,乙烯与氧气分子碰撞次数为1.53×1029/(s·cm3),而在75%稀释度下,该碰撞次数增加为5.99×1030/(s·cm3),约为前者40倍,而着火延迟时间的差异在两条件下仅为5倍的关系,可能由于位阻因子的影响所致.  相似文献   

10.
针对准二维狭缝燃烧系统,进行了扩散燃烧、预混燃烧、空气部分预混燃烧以及稀氧部分预混/富氧补燃(ODPP/OESC)等燃烧技术的排放特性对比;并进行了稀氧部分预混/富氧补燃技术中不同预混氧浓度、不同补燃氧浓度、不同预混当量比以及不同补燃位置火焰的燃烧特性以及污染物的生成特性的对比分析。研究结果表明,ODPP/OESC的燃烧工艺,能够有效地实现燃烧过程中高效率和低排放的双优化,随着预混当量比的增大以及后期补燃位置的增大,快速型NO_x生成比重明显增大。  相似文献   

11.
In order to reduce the risk of decompression sickness associated with extra-vehicular activity (EVA), NASA is designing the next generation of exploration vehicles and habitats with a different cabin environment than used previously. The proposed environment uses a total cabin pressure of 52.7–58.6 kPa with an oxygen concentration of 30–34% by volume and was chosen with material flammability in mind. Because materials may burn differently under these conditions and there is little information on how this new environment affects the flammability of the materials onboard, it is important to conduct material flammability experiments at the intended exploration atmosphere. One method to evaluate material flammability is by its ease of ignition. To this end, piloted ignition delay tests were conducted in the Forced Ignition and Spread Test (FIST) apparatus subject to this new environment. In these tests, polymethylmethacylate (PMMA) was exposed to a range of oxidizer flow velocities and externally applied heat fluxes. Tests were conducted for a baseline case of normal pressure and oxygen concentration, low pressure (58.6 kPa) with normal oxygen (21%), and low pressure with 32% oxygen concentration conditions to determine the individual effect of pressure and the combined effect of pressure and oxygen concentration on the ignition delay. It was found that reducing the pressure while keeping the oxygen concentration at 21% reduced the ignition time by 17% on average. Increasing the oxygen concentration at low pressures reduced the ignition time by an additional 10%. It was also noted that the critical heat flux for ignition decreases at exploration atmospheres. These results show that tests conducted in standard atmospheric conditions will underpredict the ignition of materials intended for use on spacecraft and that, at these conditions, materials are more susceptible to ignition than at current spacecraft atmospheres.  相似文献   

12.
In the near-burner region of pulverized coal burners, two zones exist, with very different oxygen concentrations. The first zone is a locally reducing environment, caused by the fast release of volatiles from a region of dense coal particles, and the second zone, which is surrounding the first zone, is a hot oxidizing environment. The transition of coal particles from the reducing zone to the oxidizing zone affects early stage coal combustion characteristics, such as devolatilization, ignition and particle temperature history. In this work, we used a two-stage Hencken flat-flame burner to simulate the conditions that coal particles experience in practical combustors when they transition from a reducing environment to an oxidizing environments. The composition of the reducing environment was chosen to approximate that of a typical coal volatile. Three oxygen concentrations (5, 10 and 15 vol%) in the “ambient” oxidizing environment were tested, corresponding to those at different distances downstream from a commercial burner. The corresponding gas temperatures for the oxidizing environments were adjusted for the different oxygen concentrations such that the “volatile” flame temperatures were the same, as this is what would be expected in a commercial combustor. High speed videography was used to obtain the ignition characteristics, and RGB color pyrometry was used to measure particle surface temperatures. Two different sizes of coal particles were used. It is found that when particles undergo a reducing-to-oxidizing transition at high temperatures, the particles are preheated such that the critical factor for ignition delay is point at which the particle is in the presence of oxygen, not the concentration of oxygen. The ignition delay of large particles is found to be 53% longer than that of small particles due to their higher thermal mass and slower devolatilization. The oxygen concentration in the ambient have a negligible effect on early-stage particle temperatures.  相似文献   

13.
杨晋朝  夏智勋  胡建新 《物理学报》2013,62(7):74701-074701
建立了一维非稳态球形镁颗粒群的着火燃烧模型, 数值模拟镁颗粒群的着火和燃烧过程, 研究表明, 颗粒群着火首先发生在颗粒群边界, 随后初始的燃烧火焰会分离为两个, 一个向颗粒群内部传播, 一个向外部传播, 最终内部火焰消失, 外部火焰维持并控制着整个颗粒群的燃烧; 内火焰向颗粒群内部传播过程中, 传播速度会逐渐加快, 且火焰温度值呈逐渐降低趋势. 分析了颗粒群内部参数和环境参数对镁颗粒群着火燃烧的影响. 随颗粒浓度的增大, 颗粒群着火时间略有增长, 但火焰传播速度更快, 燃烧稳定时火焰球尺寸也更大. 颗粒群初温越高, 则颗粒群着火时间越短, 火焰传播速度也会加快, 但燃烧稳定时火焰球尺寸基本不变. 环境温度对颗粒群着火燃烧的影响较复杂, 环境温度越高, 颗粒群着火时间越短, 但火焰传播速度却越慢, 燃烧稳定时火焰球尺寸变化很小. 颗粒粒径和辐射源温度对颗粒群着火燃烧的影响较显著, 颗粒粒径越小或辐射源温度越高, 则颗粒群着火时间越短, 火焰传播速度越快, 燃烧稳定时火焰球尺寸也越大. 数值模拟结果与文献中试验结果相一致. 关键词: 粉末燃料冲压发动机 镁着火燃烧 颗粒群  相似文献   

14.
The values of the ignition delay time of cyclopropane–oxygen–argon (cyclo-C3H6–O2–Ar) mixtures of different compositions (φ = 0.333, 1, and 3) behind reflected shock waves at temperatures of 1200–1640 K and a pressure of (0.55 ± 0.05) MPa are measured. A kinetic mechanism of cyclopropane ignition using the known rate constants for the most important elementary reactions is developed. The mechanism closely describes both our own and published experimental data on the delay time of ignition of cyclopropane in shock waves over wide ranges of temperature (1200–2100 K), pressure (0.1–0.55 MPa), cyclopropane concentrations (0.05–11 vol %), and oxygen concentrations (0.25–21 vol %). It is shown that, with increasing fraction of diluent gas in the mixture, the dependence of the ignition delay time on the fuel-to-oxidizer equivalence ratio changes.  相似文献   

15.
The effects of blending ratio on mixtures of an alcohol-to-jet (ATJ) fuel and a conventional petroleum-derived fuel on first stage ignition and overall ignition delay are examined at engine-relevant ambient conditions. Experiments are conducted in a high-temperature pressure vessel that maintains a small flow of dry air at the desired temperature (825 K and 900 K) and pressure (6 MPa and 9 MPa) for fuel injections from a custom single-hole, axially-oriented injector, representing medium (7.5 mg) and high (10 mg) engine loading. Formaldehyde, imaged using planar laser-induced fluorescence, is measured at discrete time steps throughout the first and second stage ignition process and is used as a marker of unburned short-chain hydrocarbons formed after the initial breakdown of the fuel. The formaldehyde images are used to calculate the first stage ignition delay for each ambient and fuel loading condition. Chemiluminescence imaging of excited hydroxyl radical at 75 kHz is used to determine the overall ignition delay. At all conditions, increased volume fraction of ATJ resulted in longer, but non-linearly increasing, overall ignition delay. Across all of the blends, first stage ignition delay accounted for about 15% of the increase in overall ignition delay compared to the military's aviation kerosene, F-24, which is Jet A with additives, while extended first stage ignition duration accounted for 85% of the increase. It is observed that blends consisting of 0–60% by volume of the low cetane number ATJ fuel produced nearly identical first stage ignition delays. These results will inform the development of ignition models that can capture the non-linear effects of fuel blending on ignition processes.  相似文献   

16.
Simulations of an n-heptane spray autoigniting under conditions relevant to a diesel engine are performed using two-dimensional, first-order conditional moment closure (CMC) with full treatment of spray terms in the mixture fraction variance and CMC equations. The conditional evaporation term in the CMC equations is closed assuming interphase exchange to occur at the droplet saturation mixture fraction values only. Modeling of the unclosed terms in the mixture fraction variance equation is done accordingly. Comparison with experimental data for a range of ambient oxygen concentrations shows that the ignition delay is overpredicted. The trend of increasing ignition delay with decreasing oxygen concentration, however, is correctly captured. Good agreement is found between the computed and measured flame lift-off height for all conditions investigated. Analysis of source terms in the CMC temperature equation reveals that a convective–reactive balance sets in at the flame base, with spatial diffusion terms being important, but not as important as in lifted jet flames in cold air. Inclusion of droplet terms in the governing equations is found to affect the mixture fraction variance field in the region where evaporation is the strongest, and to slightly increase the ignition delay time due to the cooling associated with the evaporation. Both flame propagation and stabilization mechanisms, however, remain unaffected.  相似文献   

17.
煤粒均相着火规律的研究   总被引:1,自引:0,他引:1  
煤粒均相着火规律的研究张军,傅维标(清华大学工程力学系北京100084)关键词均相着火,简化模型,预报1前言煤粉颗粒既能发生均相着火,又能发生非均相着火山。对非均相着火,许多学者进行了研究,取得了很多有价值的成果。均相着火由于比较复杂,一直发展缓慢。...  相似文献   

18.
This work investigated the combustion characteristics of single pulverized biomass-derived char particles. The char particles, in the size range 224–250 µm, were prepared in a drop tube furnace at pyrolysis temperatures of 1273 or 1473 K from four types of biomass particles – wheat straw, grape pomace, kiwi branches and rice husk. Subsequently, the char particles were injected upward into a confined region of hot combustion products produced by flat flames stabilized on a McKenna burner, with mean temperatures of 1460, 1580 and 1670 K and mean O2 concentrations of 4.5, 6.5 and 8.5 vol%. The data reported include particle temperature, obtained using a two-color pyrometry technique, and potassium release rate, measured using a laser-induced photofragmentation fluorescence imaging technique. In addition, particle ignition delay time and burning time, obtained from the temporal evolution of the thermal radiation intensity of the burning char particles, are also reported. The results indicated that ignition of the char particles occurs simultaneously with the starting of the potassium release, then the particle burning intensity increases rapidly until it reaches a maximum, after which both the particle temperature and the potassium release rate remain approximately constant until the end of the char oxidation process. The char ignition process is temperature controlled, and the char oxidation process is oxygen diffusion controlled, with the total potassium release being independent of the oxygen concentration and the temperature of the combustion products. The combustion behavior of the chars studied is more affected by the char type than by the conditions used to prepare them.  相似文献   

19.
An experimental study on ignition and combustion of single particles was conducted at normal gravity (1-g) and microgravity (μ-g) for three high volatile coals with initial diameter of 1.5 and 2.0 mm, respectively. The non-intrusive twin-color pyrometry method was used to retrieve the surface temperature of the coal particle through processing the images taken by a color CCD camera. At the same time, a mathematical model considering thermal conduction inside the coal particle was developed to simulate the ignition process.Both experiments and modeling found that ignition occurred homogeneously at the beginning and then heterogeneously for the testing coal particles burning at μ-g. Experimental results confirmed that ignition temperature decreased with increasing volatile content and increasing particle size. However, contradicted to previous studies, this study found that for a given coal with certain particle size, ignition temperature was about 50–80 K lower at μ-g than that at 1-g.The model predictions agreed well with the μ-g experimental data on ignition temperature. The criterion that the temperature gradient in the space away from the particle surface equaled to zero was validated to determine the commence of homogeneous ignition. Thermal conduction inside the particle could have a noticeable effect for determining the ignition temperature. With the consideration of thermal conduction, the critical size for the phase transient from homogeneous to heterogeneous is about 700 μm at ambient temperature 1500 K and oxygen concentration 0.23.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号