首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reviews the progression in refrigerants for chillers, from historical selections through current options and projections for the future. It examines the global environmental issues that catalyzed recent changes. It then discusses candidate refrigerants in the context of future availability (or phaseout) based on controls for environmental protection, efficiency, toxicity, flammability, and escalating future costs. It notes that negative marketing and conflicting claims, intended to discredit competitor's approaches, create confusion and retard replacement of older, less-efficient equipment. The result hurts the environment, increases costs, and stifles the chiller market. The paper concludes that most of the current anxiety with refrigerant selections is unwarranted. Engineers, building owners, and others involved in chiller decisions should revert to traditional chiller specifications based on cost, performance, local manufacturer support, service options, and reliability. Anticipating more stringent environmental regulations, they also should take all practical steps to reduce refrigerant releases and increase efficiency. The paper examines future refrigerant options for chillers. Noting that there are no ideal refrigerants and that none are likely to be found, it recommends scientific determination of acceptability rather than market manipulation.  相似文献   

2.
Simulation has been widely used for performance prediction and optimum design of refrigeration systems. A brief review on history of simulation for vapour-compression refrigeration systems is done. The models for evaporator, condenser, compressor, capillary tube and envelop structure are summarized. Some developing simulation techniques, including implicit regression and explicit calculation method for refrigerant thermodynamic properties, model-based intelligent simulation methodology and graph-theory based simulation method, are presented. Prospective methods for future simulation of refrigeration systems, such as noise-field simulation, simulation with knowledge engineering methodology and calculation methods for nanofluid properties, are introduced briefly.  相似文献   

3.
A survey was carried out in France from April to June 1999. Temperatures were recorded at three levels (top, middle and bottom) of the refrigerator compartment using a data logger. A questionnaire was filled in, enabling the following information to be obtained: characteristics of the family, characteristics of the refrigerator and the use conditions. One hundred and forty-three domestic refrigerators were surveyed, but due to various technical problems, only 119 sets of recorded temperatures were exploitable. The temperatures of the surveyed refrigerators were: average 6.6 °C, minimum 0.9 °C and maximum 11.4 °C. Statistical analysis such as clustering and segmentation were used. It was found that the heterogeneousness of temperature inside each refrigerator seems to be dependent on the type. This study shows the influence of the use conditions on the temperature. No one factor exerts a single direct effect; a combination of the effects of all factors is observed.  相似文献   

4.
Interest has grown in recent years to extend the use of hydrocarbons and ammonia as working fluids in refrigeration to new domains of application, despite their flammability. In the context of pool boiling heat transfer, this has created increasing research activities, particularly with regard to hydrocarbons. In contrast with this, only a few new experimental results have been added to the data set existing for ammonia in the literature. So this review will concentrate on hydrocarbons, while ammonia will be treated in a comparatively brief part.The review starts with the state-of-the-art that had been reached at about 1990. It continues with the data set for propane being taken as an example to highlight various reasons for the experimental data scatter that is found when different sources are compared for the same substance. In the main part, new results of 12 (aliphatic) hydrocarbons are discussed regarding the influence of heat flux q and reduced saturation pressure p* = ps/pc on the heat transfer coefficient α, and also the variation in α0 caused by the differences in the thermophysical properties of the 12 hydrocarbons at constant q0 and . It is shown that the dependencies of the heat transfer coefficient α on heat flux q and reduced pressure p*, and on the thermophysical properties of the various fluids at constant values q0 and can be correlated by general semi-empirical functions with comparatively narrow limits of error that do not reach far beyond the experimental scatter occurring when different sources are compared for the same substance. Before treating ammonia in a final section, the review on hydrocarbons closes with short discussions for mixtures of hydrocarbons, for the bundle effect, and for the behaviour of enhanced tubes.  相似文献   

5.
Heat sources for heat pumps in buildings as well as in industry are discussed. Furthermore, some environmental aspects concerning choice of heat source are highlighted. Only systems for heat pumping are included, i.e. air-conditioning types which can also partly work as heat pumps are excluded. Recent heat pump installations in Sweden are mainly in small systems. Ambient air, exhaust air, soil and rock are the most common heat source types. Data on COP, investment costs, working fluids, present Swedish market etc. for these types of heat sources are given. Data on industrial heat pump installations in some countries and distribution of these according to heat pump type and industry sector as well as heat source temperatures are reported. Process integration aspects when choosing heat source size and temperature are also discussed as well as the relation between these parameters and the choice of heat pump type. Finally, the influence on the economy of the heat source temperature is presented. The cost-effectiveness of heat pumps for reducing CO2 emissions compared with other heating technologies is discussed. The main results are: (1) heat pumps can in many cases in the future contribute to a reduction of CO2; (2) there is a rather big difference, for larger systems a major difference, between the water-based and the ambient air-based heat pumps in terms of efficient reduction of greenhouse gas emissions.  相似文献   

6.
Current and future prospects of enhanced heat transfer in ammonia systems   总被引:2,自引:0,他引:2  
In the last decade a moderate headway has been made in the application of enhanced surface heat exchangers in ammonia refrigeration systems. This has been a result of the persistent issue of ozone and global warming which has resulted in keen interest in natural refrigerants such as ammonia that has played a prominent role in the refrigeration industry for years, particularly in the field of food, beverage and marine. The only drawback with ammonia is the toxicity; hence, if smaller heat exchangers could be introduced in order to reduce ammonia charge, this negative aspect about ammonia can be addressed to a great extent. In order to achieve this goal, novel and compact heat exchangers with enhanced surfaces have to be introduced. This paper presents an over view of the status of ammonia as a refrigerant and discusses the present and the future trends in the development of compact heat exchangers for use in ammonia refrigeration.  相似文献   

7.
This paper is a synthesis of the state of the art in the design and theory of regenerative Pulse Tube cryogenic systems. A general outlook of the functional principles and of the processes occurring in these cryogenic systems is given. The main irreversibility sources are analyzed. A review of the important contributions on the subject, likely to improve the constructional and functional characteristics, is then presented, along with the evaluation of their scientific foundation.  相似文献   

8.
Room temperature magnetic refrigeration is a new highly efficient and environmentally protective technology. Although it has not been maturely developed, it shows great applicable prosperity and seems to be a substitute for the traditional vapor compression technology. In this paper, the concept of magnetocaloric effect is explained. The development of the magnetic material, magnetic refrigeration cycles, magnetic field and the regenerator of room temperature magnetic refrigeration is introduced. Finally some typical room temperature magnetic refrigeration prototypes are reviewed.  相似文献   

9.
The possible configurations of incorporating the loop heat pipe into the air-conditioning system to perform the reheat process are introduced and evaluated. The results show that the coefficient of performance of the system can be improved and the energy required by the compressor can be reduced when LHP is used instead of the heating element. For low room sensible heat factor, using loop heat pipe can improve the COP by approximately 2.1-fold over that when heating element is used. The results also show that the possible configurations of incorporating the loop heat pipe considered for small air-conditioning unit have the same COP, and among the possible configurations used in air-handling unit. The configuration where the loop heat pipe evaporator is placed in the supply air passage gives the highest COP followed by that where the loop heat pipe evaporator is placed in the return air passage then that where the loop heat pipe evaporator is placed in the passage of the outside air.  相似文献   

10.
High pressure freezing and thawing of foods: a review   总被引:2,自引:0,他引:2  
The phase diagram of water shows that the melting temperature of water decreases with pressure down to −21°C at 210 MPa while the opposite effect is observed above this pressure. This phenomenon allows the achievement of rapid freezing and thawing of foods that mainly contain water. In addition, pressure-assisted thawing has the advantage of inducing a reduction in drip loss which tends to be a function of process parameters and nature of the product. Concerning pressure shift freezing, this process permits the significant preservation of the microstructure of biological substances. The current status of high pressure freezing and thawing applications in foods is reviewed in this paper. Concepts and principles underlying the application of these technologies are firstly developed. Available literature on the applications of high pressure freezing and thawing is then presented and discussed. Finally, the modelling aspects of theses processes are dealt with.  相似文献   

11.
Condensation heat transfer, both inside and outside horizontal tubes, plays a key role in refrigeration, air conditioning and heat pump applications. In the recent years the science of condensation heat transfer has been severely challenged by the adoption of substitute working fluids and new enhanced surfaces for heat exchangers. Well-known and widely established semiempirical correlations to predict heat transfer during condensation may show to be quite inaccurate in some new applications, and consequently a renewed effort is now being dedicated to the characterisation of flow conditions and associated predictive procedures for heat transfer and pressure drop of condensing vapours, even in the form of zeotropic mixtures. This paper critically reviews the most recent results appeared in the open literature and pertinent to thermal design of condensers for the air conditioning and refrigeration industry; both in-tube and bundle condensation are considered, related to the use of plain and enhanced surfaces.  相似文献   

12.
Air conditioning is a non-critical application for fault detection and diagnosis (FDD) where decisions about servicing faults should involve the use of economics. Existing methods for evaluating impacts of faults on equipment performance only consider some individual factors such as the equipment coefficient of performance (COP) or cooling capacity. This paper develops an overall economic performance degradation index (EPDI) for air conditioning equipment that includes the combined effects of degradations in COP, cooling capacity, and sensible heat ratio (SHR). EPDI quantifies the performance degradation caused by faults based on economics so it can be used as part of the decision making process in an overall FDD system. Furthermore, EPDI can be used along with estimates of typical field performance degradations to assess the economic benefits associated with the application of automated FDD. A case study is presented where EPDI was applied to measurements for an existing unit where faults were artificially introduced.  相似文献   

13.
This paper summarizes analyses of refrigerant options for chillers. It presents tabulated global warming potentials and other environmental data for candidate refrigerants. The paper discusses briefly the historic progression in refrigerant release reductions and presents analyses to compare the efficiencies of historic and current refrigerant options. The 28 refrigerants addressed include chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), hydrofluorocarbon (HFC), hydrocarbon (HC), and inorganic (such as ammonia) fluids. The paper discusses the relative importance of the refrigerant-related and energy-related components of chiller emissions.  相似文献   

14.
This paper describes the development and evaluation of features and virtual sensors that form the basis of a methodology for detecting and diagnosing multiple-simultaneous faults in vapor compression air conditioning equipment. The features were developed based upon a physical understanding of the system, cost considerations, and heuristics derived from experimental data and modeling results. Virtual sensors were developed in order to reduce the cost of implementation. The validity of the features and virtual sensors was evaluated using measurements from a variety of different air conditioners tested in a laboratory environment. More detailed evaluation results are presented in separate papers.  相似文献   

15.
A new way to assess the performance of refrigeration system models is presented in this paper, based on the estimation of cycle parameters, such as the evaporation temperature which will determine the validity of the method. This paper is the first of a series which will also study the influence of the heat transfer coefficient models on the estimation of the refrigeration cycle parameters. It focuses on fin and tube evaporators and includes the dehumidification process of humid air. The flow through the heat exchanger is considered to be steady and the refrigerant flow inside the tubes is considered one-dimensional. The evaporator model is discretised in cells where 1D mass, momentum and energy conservation equations are solved by using an iterative procedure called SEWTLE. This procedure is based on decoupling the calculation of the fluid flows from each other assuming that the tube temperature field is known at each fluid iteration. Special attention is paid to the correlations utilised for the evaluation of heat transfer coefficients as well as the friction factor on the air and on the refrigerant side. A comparison between calculated values and measured results is made on the basis of the evaporation temperature. The experimental results used in this work correspond to an air-to-water heat pump and have been obtained by using R-22 and R-290 as refrigerants.  相似文献   

16.
The predictive methods for the calculation of the heat transfer coefficient α with pool boiling are important tools for the optimum design of the evaporator and for the successful operation of refrigeration units. The method given in the VDI Heat Atlas is discussed as an example of the currently available methods/ and results of recent experimental investigations on nucleate boiling of partly fluorinated hydrocarbons (HFCs) and of hydrocarbons (HCs) are added covering those parts where the predictive methods should be improved, namely boiling of mixtures, influence of surface structure and material of the heating wall, and influence of additional flow of bubbles and liquid in tube bundles.  相似文献   

17.
This paper studies refrigeration cycles in which plate heat exchangers are used as either evaporators or condensers. The performance of the cycle is studied by means of a method introduced in previous papers which consists of assessing the goodness of a calculation method by looking at representative variables such as the evaporation or the condensation temperature depending on the case evaluated. This procedure is also used to compare several heat transfer coefficients in the refrigerant side. As in previous works the models of all the cycle components are considered together with the heat exchanger models in such a way that the system of equations they provide is solved by means of a Newton–Raphson algorithm. Calculated and measured values of the evaporation and the condensation temperatures are also compared. The experimental results correspond to the same air-to-water heat pump studied in other papers and they have been obtained by using refrigerants R-22 and R-290.  相似文献   

18.
In this study, an improved cooling cycle for a conventional multi-evaporators simple compression system utilizing ejector for vapour precompression is analyzed. The ejector-enhanced refrigeration cycle consists of multi-evaporators that operate at different pressure and temperature levels. A one-dimensional mathematical model of the ejector was developed using the equations governing the flow and thermodynamics based on the constant-area ejector flow model. The model includes effects of friction at the constant-area mixing chamber. The energy efficiency and the performance characteristics of the novel cycle are theoretically investigated. The comparison between the novel and conventional system was made under the same operating conditions. Also, a comparison of the system performances with environment friendly refrigerants (R290, R600a, R717, R134a, R152a, and R141b) is made. The theoretical results show that the COP of the novel cycle is better than the conventional system.  相似文献   

19.
This paper discusses the conservation of energy in a cogeneration system. A steam power cycle (Rankine) produces electrical power 2 MW and steam is bleeded off from the turbine at 7 bar to warm a factory or units of buildings during the winter or to supply a steam ejector refrigeration cycle to air-conditioning the same area during the summer. In the summer this system can be as alternative solution instead of absorption. Certainly the ejector refrigeration unit is more economical than absorption unit. The ratio of electrical power/heat is varied into the region (0.1–0.4) and the evaporator temperature of the ejector cycle is varied into the region (10–16 °C). A computer program has been developed for the study of performance parameters of the cogeneration system.  相似文献   

20.
Two adsorption systems are considered: zeolite–water and activated carbon–methanol, both consisting of two ‘uniform temperature' adsorbent beds operating with internal heat recovery by a heat carrier circuit. Regarding the zeolite–water system, the performance obtained with a new adsorbent bed, with good heat transfer properties, is compared with a traditional tube and fin exchanger embedded with zeolite pellets. The performances were calculated by using a dynamic model developed and validated previously. Results show that the system based on the new adsorber has a higher specific power and the same Coefficient of Performance. Results of simulation for adsorbers consisting of finned tube heat exchangers and utilising the activated carbon–methanol pair are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号