首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Membranes were prepared from solutions containing Udel‐type polysulfone (PSf) and sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO). Polymer solutions in 1‐methyl‐2‐pyrrolidone were cast on a nonwoven textile and precipitated in a water bath. The permeabilities and selectivities of the prepared membranes depended on the concentrations of both polymers in the casting solution. The higher the concentration of PSf, the lower were the permeabilities to water and average pore sizes of the membranes. On the other hand, a very small amount of SPPO in the casting solution (about 1–4 wt % relative to the casting solution weight) brought about a considerable increase in water permeabilities and had a small influence on the average pore sizes. The effects were most pronounced if SPPO with a degree of sulfonation of 20–40% was used. The considerable increase in water permeabilities was explained by separation of the PSf and SPPO phases during precipitation in water and by the concentration of hydrophilic SPPO on the surface of the membrane and its pores. The determinations of the oriented concentration potentials proved the presence of a negative surface charge in the membranes. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 134–142, 2001  相似文献   

2.
New ion‐exchange acid/base‐blend (SPPO/PBI) membranes were prepared by mixing N,N‐dimethylacetamide (DMA) solutions of sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO) in the ammonium form and of polybenzimidazole (PBI), casting the solution as a thin film, evaporating the solvent, and treating the membrane with aqueous hydrochloric acid. The resulting membranes were found insoluble in DMA. The preliminary tests of the membranes were carried out in an H2/O2 fuel cell at room temperature. Their performance in the fuel cell increased with the increase in the concentration of SPPO sulfonic acid groups in the blend, but the membranes formed with the highly sulfonated SPPO alone or predominanting, which swelled excessively in water, did not give reproducible results, and their performance was usually inferior to that of the membranes having an optimum ratio of both components. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1118–1127, 2002  相似文献   

3.
A series of high temperature polymer electrolyte membranes were fabricated based on imidazolium poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) using methylimidazole (MeIm) and triethoxysilylpropyldihydroimidazole (SiIm) as quaternization reagents via the SN2 nucleophilic substitution. Meanwhile SiIm was also employed as a crosslinking agent and the crosslinked Si–O–Si network was constructed through a hydrolysis procedure of SiIm in an acid medium. Compared with the PPO‐100%MeIm membrane without the crosslinking structure, the imidazolium siloxane crosslinked PPO‐x%SiIm‐y%MeIm membranes exhibited increased acid doping contents, enhanced dimensional stabilities, improved mechanical properties and higher conductivities. The PPO‐30%SiIm‐70%MeIm/(198 wt% phosphoric acid) membrane displayed a conductivity of 0.08 S cm?1 at 180 °C without humidifying and a tensile strength of 6.4 MPa at room temperature. © 2019 Society of Chemical Industry  相似文献   

4.
The thermal degradation and kinetics of poly(2,6‐dimethylphenylene oxide) (PPO) were studied by high‐resolution thermogravimetry. The thermogravimetry measurements were conducted at an initial heating rate of 50°C min−1, resolution 4.0, and sensitivity 1.0 in both nitrogen and air from room temperature to 900°C. A two‐step degradation process was clearly revealed in air at the temperatures of 430°C and 521°C. The thermal degradation temperatures and kinetic parameters of the PPO appear to be higher in air than in nitrogen, indicative of a higher thermostability in air. The temperature, activation energy, order, and frequency factor of the thermal degradation of the PPO in nitrogen are 419°C, 100–120 kJ mol−1, 0.5, and 13–17 min−1, respectively. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1887–1892, 1999  相似文献   

5.
Mono‐ and bifunctional poly(phenylene oxide) (PPO) macroinitiators for atom transfer radical polymerization (ATRP) were prepared by esterification of mono‐ and bishydroxy telechelic PPO with 2‐bromoisobutyryl bromide. The macroinitiators were used for ATRP of styrene to give block copolymers with PPO and polystyrene (PS) segments, namely PPO‐block‐PS and PS‐block‐PPO‐block‐PS. Various ligands were studied in combination with CuBr as ATRP catalysts. Kinetic investigations revealed controlled polymerization processes for certain ligands and temperature ranges. Thermal analysis of the block copolymers by means of DSC revealed only one glass transition temperature as a result of the compatibility of the PS and PPO chain segments and the formation of a single phase; this glass transition temperature can be adjusted over a wide temperature range (ca 100–199 °C), depending on the composition of the block copolymer. Copyright © 2005 Society of Chemical Industry  相似文献   

6.
The miscibility behavior of poly(vinyl phenyl ketone hydrogenated) (PVPhKH) and poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) are studied by differential scanning calorimetry, thermomechanical analysis, and FTIR spectroscopy. Two miscibility windows between 10 to 40 and 60 to 90 wt % PPO are detected. Only the blend with 50 wt % PPO is immiscible. The best fit of the Gordon–Taylor equation of the experimental glass‐transition temperatures for miscible PVPhKH/PPO blends is shown. A study by FTIR spectroscopy suggests that hydrogen bonding interactions are formed between the hydroxyl groups of PVPhKH and the ether groups of PPO. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1887–1892, 2004  相似文献   

7.
A series of poly(ether–ester) copolymers were synthesized from poly(2,6 dimethyl‐1,4‐phenylene oxide) (PPO) and poly(ethylene terephthalate) (PET). The synthesis was carried out by two‐step solution polymerization process. PET oligomers were synthesized via glycolysis and subsequently used in the copolymerization reaction. FTIR spectroscopy analysis shows the coexistence of spectral contributions of PPO and PET on the spectra of their ether–ester copolymers. The composition of the poly(ether–ester)s was calculated via 1H NMR spectroscopy. A single glass transition temperature was detected for all synthesized poly(ether–ester)s. Tg behavior as a function of poly(ether–ester) composition is well represented by the Gordon‐Taylor equation. The molar masses of the copolymers synthesized were calculated by viscosimetry. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

8.
Strong acid homogenous cation exchange membranes were obtained by simultaneously introducing sulfonic and bromine groups into poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO). The ion‐exchange capacity (IEC), water content, transport number, diffusion coefficient, contact angle, and tensile strength of the obtained membranes were studied. The results show that the membrane intrinsic properties are largely dependent on the substitution of bromine: the IEC and water content decrease with bromine content, while the area resistance and permselectivity of the membranes increase with this trend. Therefore, by properly balancing them, a series of homogenous cation exchange membranes having good electrical properties and physical stability can be obtained to comply with different industrial electromembrane processes, such as diffusion dialysis, electrodialysis, electrodeionization, etc. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2238–2243, 2006  相似文献   

9.
Poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) of different intrinsic viscosities has been studied to understand the effect of polymer molecular weight on the permeability and permeability ratio of CO2/CH4 and O2/N2 gas pairs. The increase in permeability of dense films prepared from higher molecular weight PPO was explained in terms of increased free volume. Gas permeability for the high molecular weight was further improved by attaching bulky bromine groups to the phenyl ring of the PPO backbone. Permeability ratio of PPO was greatly improved by attaching polar groups such as —COOH or —SO3H. The loss in permeability because of the presence of the polar groups was compensated by using PPO that was brominated and sulfonated. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1137–1143, 2000  相似文献   

10.
New functionalized poly(2,6‐dimethyl‐1,4‐phenylene oxide)s (PPOs) containing ethylenic, aldehydic, hydroxyl and acrylate pendant groups were synthesized and their structure, properties and curing kinetics were investigated. The incorporation of polar functional groups resulted in an improvement in the glass transition temperature in the order aldehydic PPO > acrylate PPO > hydroxyl PPO > vinyl PPO > brominated PPO > pristine PPO. Upon thermal curing, the electron‐donating substituent in the vinyl PPO resulted in an increase in the activation energy in the order –Pr, –Bu > –Ph > –H, whereas the electron‐withdrawing substituent in the acrylate PPO caused a slight decrease in the activation energy. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
A series of poly (2,6‐dimethyl‐1,4‐phenylene oxide) (PPO)‐based organic/inorganic films for the potential application in membrane gas separation were prepared by employing a method in which aluminum hydroxonitrate contained in a stable water‐in‐oil (W/O) emulsion, the oil phase being a solution of PPO in trichloroethylene, was mixed with a homogeneous solution of PPO in trichloroethylene containing tetraethyl orthosilicate (TEOS). Inorganic polymerization occurred in or at the surface of the aqueous droplets of the W/O emulsion. Subsequently, thin films were prepared by a spin coating technique, and they were referred to as emulsion polymerized mixed matrix (EPMM) films. Scanning electron micrographs taken from a film cross section indicated the presence of particles in the PPO matrix, and energy dispersive X‐ray measurements showed that the embedded particles contained Al and Si elements. Differential scanning calorimetry analysis showed a decrease in the glass transition of the EPMM films with increase of TEOS loading. The compatibility between aluminum silicate nanoparticles and PPO in the EPMM films was confirmed by air separation tests. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The sulfonation reaction of poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) has been carried out, incorporating the resulting product into pure PPO to study, in forthcoming research, the electrical and mechanical features of the composites with regard to their performance in fuel cells. Pure sulfonated polymers and their blends have been characterized from a microstructural and electrical point of view, by means of X‐ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC) and complex impedance spectroscopy. Membranes have been manufactured with excellent ionic conductivity at room temperature. © 2000 Society of Chemical Industry  相似文献   

13.
The effect of ionomer structure on gas transport properties of membranes was investigated. For this purpose physical and transport properties of poly(phenylene oxide) (PPO) and its sulfonated derivative (SPPO) were compared. SPPO has a more rigid structure and a lower free volume, which determines low gas permeability and high permselectivity. Gas transport properties of two types of SPPO—PPO composite membranes with top layers prepared from solutions in methanol or N,N-dimethylacet-amide (DMA) were investigated. The use of SPPO solution in DMA leads to the formation of membranes with higher gas permeability. It was shown that DMA is a morphologically active solvent for SPPO. Strong complexes of SPPO with DMA are formed in solution and retained upon transition into the condensed state. The plasticizing effect of DMA on SPPO determines the high gas permeability of the membranes and is in agreement with their mechanical properties. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1439–1443, 1997  相似文献   

14.
Poly(phenylene oxide)s were synthesized by the oxidative polymerization of 2‐phenyl phenol (PP) and 2‐allyl phenol (AP). The copolymers were also synthesized with 80 mol % PP and 20 mol % AP and with equimolar monomers. The polymers were characterized. Blends of these polymers with poly(vinylidene fluoride) were prepared. These blend membranes were sulfonated, and their suitability for applications in fuel cells was evaluated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 307–311, 2003  相似文献   

15.
The miscibility of the binary and ternary blends of poly(2,6‐dimethyl‐1,4‐phenylene oxide), brominated polystyrene, and polystyrene was investigated using a differential scanning calorimeter. The morphology of these blends was characterized by scanning electron microscopy. These studies revealed a close relation between the blend structure and its mechanical properties. The compatibilizing effect of poly(2,6‐dimethyl‐1,4‐phenylene oxide) on the miscibility of the polystyrene/brominated polystyrene blends was examined. It was found that poly(2,6‐dimethyl‐1,4‐phenylene oxide), which was miscible with polystyrene and partially miscible with brominated polystyrene, compatibilizes these two immiscible polymers if its contention exceeds 33 wt %. Upon the addition of poly(2,6‐dimethyl‐1,4‐phenylene oxide) to the immiscible blends of polystyrene/brominated polystyrene, we observed a change in the morphology of the mixtures. An improvement in the mechanical properties was noticed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 225–231, 2000  相似文献   

16.
Integrally skinned asymmetric flat sheet membranes were prepared from poly(2,6‐dimethyl 1,4‐phenylene oxide)(PPO) for CO2–CH4 separation. Various experiments were carried out to identify PPO membranes, which have good mechanical strength and gas separation abilities. Membrane strength and selectivity depend on the interplay of the rate of precipitation and the rate of crystallization of the PPO. The effects of major variables involved in the membrane formation and performance, including the concentration of the polymer, solvent, and additive, the casting thickness, the evaporation time before gelation, and the temperature of the polymer solution, were investigated. Factorial design experiments were carried out to identify the factor effects. The membrane performance was modelled and optimized to approach preset values for high CO2 permeance and a high CO2 : CH4 permeance ratio. Membranes were prepared based on the optimum conditions identified by the model. Essentially, defect‐free membranes were prepared at these conditions, which resulted in a pure gas permeance of 9.2 × 10−9 mol/m2 s Pa for CO2 and a permeance ratio of 19.2 for CO2 : CH4. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1601–1610, 1999  相似文献   

17.
This article investigates the comprehensive properties of sulfonated poly(phenylene oxide) (SPPO) membranes with different sulfonation degrees and presents the completion of previous work necessary for the application of SPPO membranes to proton‐exchange membrane fuel cells. The sulfonation level has been accurately determined by conductometric titration and 1H‐NMR, and the glass‐transition temperature has been obtained with both differential scanning calorimetry and dynamic mechanical thermal analysis. Sulfonic groups attached to the aromatic ring in the poly(phenylene oxide) backbone split at 220–340°C, but the main‐chain splitting temperature of SPPO is similar to that of the pure polymer. In addition, the effects of sulfonic groups and water on the tensile strength of these membranes have been studied. An increase in the sulfonate groups in the polymer results in an increase in the water uptake. Atomic force microscopy phase images of the acid‐form membranes clearly show the hydrophilic domains, and the ionic regions of the membranes with a low sulfonation degree are isolated and become connected to produce a cocontinuous morphology as the degree of sulfonation increases. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1244–1250, 2005  相似文献   

18.
The synthesis of a thermally stable proton conducting polymer based on poly(phenylene oxide) (PPO) was carried out using 2,6‐dimethylphenol (DMP) and 2‐allylphenol (AP) as monomers. The copolymers using the two monomers were prepared with DMP to AP molar ratios of 20:80, 40:60, 60:40, and 80:20. The polymers and the copolymers were blended with poly(vinylidene fluoride) and cast as membranes. All the membranes were sulfonated and characterized for their suitability as a polymer electrolyte membrane. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1792–1798, 2002  相似文献   

19.
New composite proton exchange membrane was prepared by mixing a 1‐methyl‐2‐pyrrolidone (NMP) solution of sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO) in sodium form and brominated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (BPPO) for hydrophilic‐hydrophobic balance, then casting the solution as a thin film, evaporating the solvent, and treating the membrane with aqueous hydrochloric acid. The resulting membranes were subsequently characterized using FTIR‐ATR, SEM‐EDXA, and TGA instrumentation as well as measurements of basic properties such as ion exchange capacity (IEC), water uptake, proton conductivity, methanol permeability, and single cell performance. Water uptake, IEC, proton conductivity, and methanol permeability all increased with a corresponding increase of SPPO content. By properly compromising the conductivity and methanol permeability, membranes with 60–80 wt % SPPO content exhibited comparable proton conductivity to that of Nafion® 117, with only half the methanol permeability, thereby demonstrating higher single cell performance. The membranes developed in this study could thus be a suitable candidate electrolyte for proton exchange membrane fuel cells (PEMFCs). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Blends of styrene–butadiene–styrene (SBS) or styrene–ethylene/1‐butene–styrene (SEBS) triblock copolymers with a commercial mixture of polystyrene (PS) and poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) were prepared in the melt at different temperatures according to the chemical kind of the copolymer. Although solution‐cast SBS/PPO and SBS/PS blends were already known in the literature, a general and systematic study of the miscibility of the PS/PPO blend with a styrene‐based triblock copolymer in the melt was still missing. The thermal and mechanical behavior of SBS/(PPO/PS) blends was investigated by means of DSC and dynamic thermomechanical analysis (DMTA). The results were then compared to analogous SEBS/(PPO/PS) blends, for which the presence of a saturated olefinic block allowed processing at higher temperatures (220°C instead of 180°C). All the blends were further characterized by SEM and TGA to tentatively relate the observed properties with the blends' morphology and degradation temperature. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2698–2705, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号