首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT

The present study reports the preparation of glycidyl azide polymer with enhanced azide content. This process involves the cationic ring-opening polymerization of epichlorohydrin (ECH) using borontrifluoride etherate (BF3-etherate) and 2,2-bis(bromomethyl)1,3-propane diol (BMPD) as initiator and co-initiators, respectively, followed by subsequent azidation of the product. For both the products, poly(epichlorohydrin)s (PECHs) and glycidyl azide polymers (GAPs) the substituted 1,3-propane diol units were characterized by spectroscopic as well as thermal analysis. Vapor pressure osmometer studies indicated that as the diol concentration increased in the polymerization the formed PECH molecular weight decreased. The spectral analysis indicates the presence of corresponding diol units in their polymeric chains. The differential scanning calorimetry and elemental analysis of the GAPs developed in this investigation indicated the presence of higher azide content in the polymer.  相似文献   

2.
硝酸酯增塑的叠氮胶粘剂研究进展   总被引:1,自引:0,他引:1  
论述了国内外叠氮缩水甘油聚醚(GAP)胶粘剂的研究现状及存在的差距,评估了GAP胶粘剂预聚物的物理性能、热性能、危险性及其与推进剂组分的相容性;最后介绍了制备硝酸酯增塑GAP胶粘剂的实验室放大条件和工艺流程,并对其今后的发展方向进行了展望。  相似文献   

3.
A kind of glycidyl azide polymer (GAP)-based composite has been fabricated using propargyl-terminated ethylene oxide-tetrahydrofuran copolymer (PPET) with two (p-) and three (t-) alkyne functionalities via Huisgen reaction. Independent upon the PPET functionality, both crosslink densities and mechanical properties for two GAP/PPET systems showed a positive-interrelation changes of initial increase and subsequent decrease with an increase of azide/alkyne molar ratios. At equivalent of azide/alkyne molar ratios, the composites containing t-PPET with higher alkyne functionality exhibited better mechanical properties, while those with two alkyne functionality presented lower glass transition. Under the regulation of alkyne functionality as 3 and azide/alkyne molar ratio as 3:1, the tensile strength, Young's modulus and breaking elongation could simultaneously reach the maximum values of 1.38 MPa, 4.07 MPa, and 122.5%, which was ascribed to optimal participation of azide/alkyne reaction into network construction. Overall, this study provides an additional optimization route for network-structured binders in solid propellant system. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48016.  相似文献   

4.
概述聚叠氮缩水甘油醚(GAP)增塑剂的合成方法、合成路线及新进展,重点介绍了端羟基GAP、端叠氮基GAP、端酯基GAP和端酯基端叠氮基GAP增塑剂的合成。  相似文献   

5.
Glycidyl azide polymers (GAPs), containing different diol units, were prepared by treating the corresponding poly(epichlorohydrin)s (PECHs) with sodium azide in DMF solvent at 110°C for 8–10 h. The poly(epichlorohydrin)s containing different diol units were synthesized by the polymerization of epichlorohydrin using borontrifluoride etherate as initiator in the presence of a small amount of low molecular weight diols. The formation of these PECHs was confirmed by IR spectroscopy. The nature of terminal hydroxyl group present in the polymer chain was confirmed by proton NMR spectroscopy. The structure of GAPs containing different initiating diol units was confirmed by UV, IR, and proton NMR spectral analysis. Thermal properties of the GAPs were evaluated using differential scanning calorimetry; the stabilities and glass‐transition temperatures of the GAPs varied according to the initiating diol unit present in the polymer chains. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2157–2163, 2004  相似文献   

6.
GAP型交联改性双基推进剂黏合剂的力学性能   总被引:2,自引:0,他引:2  
将GAP与异氰酸酯预聚后引入双基推进剂黏合剂中,研究了固化剂种类、R值、固化催化剂二月桂酸二丁基锡(T12)的含量和增塑比对黏合剂的交联网络结构参数RNB值和力学性能的影响。结果表明,随着R值以及(T12)含量的增大,黏合剂的RNB值增大。在与NC中活性-OH交联反应时,TDI的反应活性比IPDI的高。GAP-TDI/NC/NG胶片的最大抗拉强度和断裂延伸率分别可达1.09MPa和202.12%,Tg最低为-42.66℃。  相似文献   

7.
聚叠氮缩水甘油醚的合成与改性研究进展   总被引:3,自引:1,他引:2  
聚叠氮缩水甘油醚(GAP)是国内外重点研究的含能粘合剂之一。该文综述了GAP的合成研究进展,重点介绍了高相对分子质量GAP、支化GAP和等规GAP的合成。针对GAP反应活性低的特点,介绍了GAP的多种端基改性方法。GAP的无规、嵌段共聚物改善了GAP粘合剂的性能,GAP与其他粘合剂的互穿及共混,为GAP在推进剂中的应用提供了广阔前景。引用文献37篇。  相似文献   

8.
A glycidyl azide polymer with pendent N, N‐diethyl dithiocarbamate groups (GAP‐DDC) was prepared by the reaction of poly(epichlorohydrin) (PECH) with pendent N, N‐diethyl dithiocarbamate groups (PECH‐DDC) and sodium azide (NaN3) in dimethylformamide (DMF). It was then used as a macro‐photoinitiator for the graft polymerization of methyl methacrylate (MMA). Photopolymerization was carried out in a photochemical reactor at a wavelength greater than 300 nm. Conversion was determined gravimetrically and first‐order time conversion plot for the polymerization system showed linear increase with the polymerization time indicating that polymerization proceed in controlled fashion. The molecular weight distribution (Mw/Mn) was in the range of 1.4–1.6 during polymerization. The formation of poly(methyl methacrylate‐g‐glycidyl azide) (PMMA‐g‐GAP) graft copolymer was characterized by gel permeation chromatography, FT‐IR spectroscopy, Thermogravimetric analysis, and differential scanning calorimetry. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
GAP/PET双软段含能聚氨酯弹性体的性能   总被引:3,自引:1,他引:2       下载免费PDF全文
为改善聚叠氮缩水甘油醚(GAP)的性能,选用环氧乙烷/四氢呋喃共聚醚(PET),以三羟甲基丙烷(TMP)为交联剂、异佛尔酮二异氰酸酯(IPDI)为固化剂,制备了GAP/PET/TMP/IPDI双软段含能聚氨酯弹性体,采用FTIR、DSC、XRD等手段对弹性体进行了表征。实验结果表明:在催化剂含量为0.1%时,两种软段与IPDI的反应速率变化有一定差异,但能够共同形成交联网络结构;PET软段的引入使得弹性体拉伸强度提高0.9MPa,延伸率提高156%;弹性体显示出两个软段的Tg,并随两类软段含量的不同而变化。所制弹性体为非晶聚合物,183℃开始分解。  相似文献   

10.
The purpose of this study was to investigate the effects of polyol on glycidyl azide polyol (GAP)‐based energetic thermoplastic polyurethane elastomers (ETPEs). Briefly, a series of GAP/polyol‐based ETPEs (GAP/polyol ETPEs) with different copolyol ratios and hard segment contents were synthesized using GAP‐diol with common polyol and 4,4‐methylenebis(phenylisocyanate)‐extended 1,5‐pentanediol as soft and hard segments, respectively, by solution polymerization in dimethylformamide. The three types of polyols used were poly(tetramethylene ether) glycol (PTMG), polycarbonate‐diol (PCL‐diol) and polycaprolactone‐diol (PCD‐diol). The synthesized GAP/polyol ETPEs were identified and characterized using Fourier transform infrared and 1H NMR spectroscopy, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and rheometric mechanical spectrometry. For GAP/PCL ETPEs with lower hard segment content, DSC results showed that the GAP segment failed to interact with either the PCL segment or PCL melting. In addition, the results of DMA showed that the presence of PCL segments in ETPEs improved the storage modulus below the melting temperature of the PCL block. Further, the crystalline PCL segments were attributed to reinforcing the ETPEs in a manner similar to that of the hard domain. As the hard segment content increased in the GAP/polyol ETPEs, both GAP/PTMG ETPEs and GAP/PCL ETPEs exhibited microphase separation transitions, while rheological experiments demonstrated a sudden decrease in complex viscosity in neighboring microphase separation transitions. © 2012 Society of Chemical Industry  相似文献   

11.
最小自由能法求解GAP在等压绝热条件下的燃烧产物   总被引:5,自引:1,他引:5  
采用最小自由能法计算了GAP在等压绝热条件下的燃烧温度以及产物的比例,从理论上说明了GAP的燃烧特点。计算结果显示,GAP燃烧产物中有较多的固态C、气态H2、CO等可以再燃烧的物质存在。  相似文献   

12.
The curing of a glycidyl azide polymer (GAP) with a triisocyanate, Desmodur N‐100, was followed by measuring the hardness and viscosity. The thermal behavior of the cured samples were investigated by a differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA). Curing causes an increase in the glass transition temperature of GAP. The Tg of gumstocks also increases with an increasing NCO/OH ratio while the decomposition temperature remains practically unchanged. The ultimate hardness of the cured samples increases with an increasing NCO/OH ratio. The binder with a NCO/OH ratio of 0.8 was found to provide the most suitable thermal and physical characteristics for composite propellant applications. The increase in the glass transition temperature of gumstocks upon curing can be compensated by using a 1:1 mixture of bis‐2,2‐dinitropropyl acetal and formal as the plasticizer. The Tg value of gumstocks can be decreased to −46.7°C by adding 25% b.w. of a plasticizer which does not have any significant effect on the decomposition properties of the gumstocks. Furthermore, a remarkable decrease in the ultimate hardness of the gumstocks is achieved upon addition of a plasticizer, while the curing time remains almost unaffected. The addition of dibuthyltin dilaurate as a catalyst reduces the curing time of the gumstocks from 3 weeks to 5–6 days at 60°C. Use of the curing catalyst also results in the hardening of the gumstocks. The decomposition properties of the gumstocks remain practically unchanged while a noticeable increase is observed in the glass transition temperature with an increasing concentration of the catalyst. This can also be compensated by a reverse effect of the plasticizer. The gel time, an important parameter which determines the pot life of a propellant material, can be measured by monitoring the viscosity of the mixture, which shows a sharp increase when gelation starts. The addition of a curing catalyst shortens the gel time remarkably. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 65–70, 2001  相似文献   

13.
Films of nitrocellulose (NC), glycidyl azide polymer (GAP), and nitroglycerine (NG) have been evaluated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, dynamic mechanical analysis (DMA), and tensile testing. The SEM micrographs demonstrate that, even at low GAP concentration, a portion of GAP will coalesce into spherical domains due to a saturation effect. This is related to the inability of higher molecular weight GAP to effectively situate itself between NC polymer chains. The addition of a small fraction of lower molecular weight NG completely changes this behavior. DMA confirms that two transitions are present and can be attributed to a plasticizer rich phase (β), a polymer rich phase (α) and that NC plasticized with GAP is in accordance with the Gordon-Taylor equation. Tensile results show that the addition of a small fraction of NG to a NC/GAP based-formulation increases elongation at break to values similar to that of the NC/NG base formulation. The combination of these two plasticizers, GAP and NG, allows for the plasticization of NC at significantly lower environmental and human toxicity levels.  相似文献   

14.
A series of novel multi‐arm azide copolymers (POGs) with the same hyperbranched poly[3‐ethyl‐3‐(hydroxymethyl)oxetane] core (PEHO‐c) and different content of linear glycidyl azide polymer shell (GAP‐s) have been synthesized by sequential cationic ring‐opening polymerization and azidation. Detailed structural information of these copolyethers was deduced from Fourier transform infrared, 1H NMR and inverse gated decoupled 13C NMR spectroscopies, matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry, gel permeation chromatography and elemental analysis. The molecular weight of POG having GAP‐s and PEHO‐c with a molar ratio 14.95:1 (Rs/c) was around 31 000 g mol?1, far above that of linear GAP (around 4000 g mol?1). The apparent viscosity and glass transition temperature (?51 to ?23 °C) decreased first and then slightly increased with increasing molecular weight. Thermal analysis revealed that all the obtained POGs exhibited excellent resistance to thermal decomposition up to 220 °C. Moreover, the energetic properties, investigated using oxygen bomb calorimetric measurements, indicated that the enthalpy of formation of the POGs was higher than that of general linear GAP, but similar to that of branched GAP under reasonable Rs/c. The compatibilities of the POGs with common materials used in solid propellants were studied using differential scanning calorimetry and the results indicated that the POGs had good compatibility with these materials. © 2017 Society of Chemical Industry  相似文献   

15.
Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were used to investigate the thermal behavior of glycidyl azide polymer (GAP) and GAP‐based binders, which are of potential interest for the development of high‐performance energetic propellants. The glass transition temperature (Tg) and decomposition temperature (Td) of pure GAP were found to be −45 and 242°C, respectively. The energy released during decomposition (ΔHd) was measured as 485 cal/g. The effect of the heating rate on these properties was also investigated. Then, to decrease its Tg, GAP was mixed with the plasticizers dioctiladipate (DOA) and bis‐2,2‐dinitropropyl acetal formal (BDNPA/F). The thermal characterization results showed that BDNPA/F is a suitable plasticiser for GAP‐based propellants. Later, GAP was crosslinked by using the curing agent triisocyanate N‐100 and a curing catalyst dibuthyltin dilaurate (DBTDL). The thermal characterization showed that crosslinking increases the Tg and decreases the Td of GAP. The Tg of cured GAP was decreased to sufficiently low temperatures (−45°C) by using BDNPA/F. The decomposition reaction‐rate constants were calculated. It can be concluded that the binder developed by using GAP/N‐100/BDNPA/F/DBTDL may meet the requirements of the properties that makes it useful for future propellant formulations. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 538–546, 2000  相似文献   

16.
应用静态拉伸、动态力学和核磁交联密度仪等方法研究了增塑剂正丁基硝氧乙基硝胺(BuNENA)、固化剂多异氰酸酯(N-100)和甲苯二异氰酸酯(TDI)、交联剂三羟甲基丙烷(TMP)、扩链剂1,4-丁二醇(BDO)对改性聚叠氮缩水甘油醚(GAP)黏合剂胶片力学性能的影响。结果表明,增塑比(Pl/Po)由0.6增至1.6,GAP黏合剂胶片的拉伸强度由0.22MPa降至0.06MPa,交联密度由6.7×10-5 mol/mL降至4.9×10-5 mol/mL,延伸率略有提升。调节N-100/TDI双固化体系,可提高GAP黏合剂胶片的强度和延伸率,当N-100和TDI的固化参数分别为0.36、1.44时,胶片强度和延伸率分别为0.24MPa和558.7%。加入质量分数0.5%的交联剂TMP可使GAP黏合剂胶片强度升至0.32MPa,延伸率降至278.5%。加入质量分数0.1%的扩链剂BDO,可使胶片强度和延伸率分别达到0.33MPa和323.1%。  相似文献   

17.
将甲基丙烯酸缩水甘油酯(GMA)、丙烯酸(AA)、马来酸酐(MAH)3种不同单体分别通过开炼机剪切加入废旧轮胎粉(GRT)后与聚氯乙烯(PVC)直接反应挤出,制备了3种PVC/GRT复合材料。利用万能电子试验机测定了材料的力学性能,实验结果表明:3种不同单体修饰的GRT/PVC复合材料中PVC/GRTg-GMA复合材料韧性提高显著,在GRT用量为5 phr,GMA、St、DCP用量分别为4、4、0.15 phr时,PVC/GRT复合材料缺口冲击强度提高25.6%。扫描电镜结果显示GMA的加入改善了界面相容性。  相似文献   

18.
Youyong Xu 《Polymer》2009,50(25):5933-9641
We present the preparation of novel single-molecular hybrid nano-cylinders by covalently attaching a monothiol-functionalized polyhedral silsesquioxane (POSS-SH) to poly(glycidyl methacrylate) (PGMA) cylindrical brushes. Grafting of GMA from a long poly-initiator poly(2-(2-bromoisobutyryloxy)ethyl methacrylate) (PBIEM) via ATRP was first carried out. Gel permeation chromatography (GPC), 1H NMR, dynamic light scattering (DLS), static light scattering (SLS) and atomic force microscopy (AFM) measurements confirmed the well-defined worm-like structures of the PGMA brushes. Then POSS-SH was covalently linked to PGMA brushes by reaction with about 19% of the epoxy groups. The successful preparation of the PGMA-POSS hybrid brush was demonstrated by Fourier-transform infrared spectroscopy (FTIR), DLS, SLS, energy dispersive X-ray spectroscopy (EDX) and thermogravimetric analysis (TGA) measurements. An increase of the length and diameter of the brushes was shown by AFM and non-stained transmission microscopy (TEM) measurements. Residual SiO2 after pyrolysis of the PGMA-POSS hybrid brush in air displayed interesting cylindrical network structures.  相似文献   

19.
Poly(glycidyl methacrylate) (PGMA) microbeads were synthesized by a simple suspension polymerization of glycidyl methacrylate and ethylene glycol dimethacrylate. The epoxy groups of the microbeads were firstly modified with 3,3′‐iminodipropionitrile (IDPN) and the resulting nitrile groups were then converted to amidoxime. From scanning electron microscopy studies, the average size of the PGMA microbeads was determined as 170 µm, which was not changed by the modification processes. For the modification of epoxy groups with IDPN, the intensity of the C≡N absorption band at 2249 cm?1 increased proportionally with reaction time; for the conversion of nitrile groups to amidoxime, it decreased. Attenuated total reflectance Fourier transform infrared spectroscopy measurements clearly showed the disappearance of the original nitrile groups and the formation of amidoxime groups through treatment with hydroxylamine under the reaction conditions specified. The microbeads possessed good thermal and morphological properties and chemical stability suitable for practical use. Therefore, the amidoximated PGMA microbeads could be used in batch and continuous processes for the adsorption of uranyl ions from seawater or aqueous media. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
A semicrystalline polymer, isotactic poly(phenyl glycidyl ether) (i‐PPGE) was used as a modifier for epoxy resin; 1,8‐Diamino‐p‐methane (MNDA) and 4,4′‐Diamino diphenyl sulfone (DDS) were used as curing agents. In the MNDA‐cured resins, the dispersed phase were spherical particles with diameters in the range of 0.5–1.0 μm when the resin was blended with 5 phr i‐PPGE. In the DDS‐cured resins, the particle size distribution of the dispersed phase was much wider. The difference was traced back to the reactivity of the curing agent and the different regimes used for curing. Through dynamic mechanical analysis, it was found that in the MNDA‐cured systems, i‐PPGE had a lower crystallinity than in the DDS‐cured system. In spite of the remarkable difference in the morphology and microstructure of the modified resins cured with these two curing agents, the toughening effects of i‐PPGE were similar for these resins. The critical stress intensity factor (KIC) was increased by 54% and 53%, respectively, for the resins cured by DDS and by MNDA, blending with 5 phr of the toughner. i‐PPGE was comparable with the classical toughners carboxyl‐terminated butadiene‐acrylonitrile copolymers in effectiveness of toughening the epoxy resin. An advantage of i‐PPGE was that the modulus and the glass‐transition temperature of the resin were less affected. However, this modifier caused the flexural strength to decrease somewhat. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1223–1232, 2002; DOI 10.1002/app.10445  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号