首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Liu  Tian  Ding  Hengnan  Luo  Rui  Chen  Leli  Cao  Yu  Cheng  Xiaonong 《Metallurgical and Materials Transactions A》2021,52(12):5409-5428

The hot deformation characteristics, microstructure evolution, and dynamic recrystallization (DRX) mechanism of the newly developed austenitic heat-resistant steel Fe–18Cr–10Ni–0.3Nb–2.5Cu were systematically investigated by thermal compression tests combined with microstructure characterizations. The activation energy (Q) map, Zener–Hollomon parameter (Z) map, and processing map were plotted according to the stress–strain curves to reveal the inherent connection between the three maps and the hot deformation characteristics of this alloy. The high η region in the processing map does not precisely correspond to the region where DRX developed. Nevertheless, the flow instability map accurately predicts the microstructure. The variation pattern of Z corresponded more closely to the hot deformation microstructure evolution than did the variation pattern of Q. The degree of DRX increases with decreasing Z. The optimal process parameters are 1000 °C/0.01 s−1/0.8 and 1100 °C/10 s−1/0.8 (temperature/strain rate/strain), and they result in complete DRX and a narrow range of Z values. The DRX mechanism at high strain rate is characterized by the combined enhancement of discontinuous DRX (DDRX), continuous DRX (CDRX), and twin-DRX (TDRX). The dominance of the particle-stimulated nucleation (PSN) mechanism at intermediate strain rate results in the formation of incompletely recrystallized microstructures with approximate orientation. Sufficient time at low strain rate promotes the development of DDRX and CDRX.

  相似文献   

3.
The hot working behavior of the nickel-base superalloy IN 625 produced by hot extrusion of a powder metallurgy (P/M) compact has been studied by compression testing in the temperature range 900 °C to 1200 °C and true strain rate range 0.001 to 100 s−1. At strain rates less than about 0.1 s−1, the stress-strain curves exhibited near steady-state behavior, while at higher strain rates, the flow stress reached a peak before flow softening occurred. The processing maps developed on the basis of the temperature and strain rate and strain dependence of the flow stress exhibited three domains. (1) The first domain occurs at lower strain rates (<0.01 s−1) and temperatures higher than about 1050 °C. The peak efficiency and the temperature at which it occurs have increased with strain. The microstructure of the specimen deformed in this domain exhibited extensive wedge cracking. (2) The second domain occurs in the intermediate range of strain rates (0.01 to 0.1 s−1) and temperatures lower than 1050 °C, and in this domain, microstructural observations indicated dynamic recrystallization (DRX) of γ containing δ precipitates and carbide particles resulting in a fine-grained structure. (3) The third domain occurs at higher strain rates (> 10 s−1) and tempe ratures above 1050 °C, with a peak efficiency of about 42 pct occurring at 1150 °C and 100 s−1. Microstructural observations in this domain revealed features such as irregular grain boundaries and grain interiors nearly free from annealing twins, which are typical of DRX of homogeneous γ phase. The instability map revealed that flow instability occurs at strain rates above 1 s−1 and temperatures below 1050 °C, and this is manifested as intense adiabatic shear bands. These results suggest that bulk metal working of this material may be carried out in the high strain rate domain where DRX of homogeneous γ occurs. On the other hand, for achieving a fine-grained product, finishing operations may be done in the intermediate strain rate domain. The wedge cracking domain and the regime of instability must be totally avoided for achieving defectfree products.  相似文献   

4.
The hot compression behavior of a 17-4 PH stainless steel (AISI 630) has been investigated at temperatures of 950 °C to 1150 °C and strain rates of 10−3 to 10 s−1. Glass powder in the Rastegaev reservoirs of the specimen was used as a lubricant material. A step-by-step procedure for data analysis in the hot compression test was given. The work hardening rate analysis was performed to reveal if dynamic recrystallization (DRX) occurred. Many samples exhibited typical DRX stress-strain curves with a single peak stress followed by a gradual fall toward the steady-state stress. At low Zener–Hollomon (Z) parameter, this material showed a new DRX flow behavior, which was called multiple transient steady state (MTSS). At high Z, as a result of adiabatic deformation heating, a drop in flow stress was observed. The general constitutive equations were used to determine the hot working constants of this material. Moreover, after a critical discussion, the deformation activation energy of 17-4 PH stainless steel was determined as 337 kJ/mol.  相似文献   

5.

The dynamic recrystallization (DRX) behaviors and their transformation process during hot deformation with various Zener–Hollomon (Z) values were investigated in nuclear grade 316H stainless steel, and the factors influencing DRX transformation, especially adiabatic heating, were evaluated in depth. During hot deformation, with the increase of the Z value, the degree of flow softening (DFS) showed a tendency to decrease first and then increase gradually. The analysis of the microstructure revealed that at low Z value (not exceeding 3.9 × 1019 s–1) deformation conditions, DRX was massively activated and the recrystallization mechanism had a transition from continuous DRX (CDRX) to discontinuous DRX (DDRX) with the increasing Z values, leading to the transition of homogeneous grains to heterogeneous grains. Furthermore, with the reactivation of DRX at high Z value deformation conditions, the discontinuous DRX becomes the primary recrystallization mode. Adiabatic heating plays an important role in facilitating the reactivation of DRX and flow softening during hot deformation with low temperature or high strain rate (high Z values, above 6.1 × 1021 s–1).

  相似文献   

6.
The austenite dynamic recrystallization (DRX) behavior and microstructure evolution of a bridge weathering steel was systematically investigated at a deformation temperature range of 800–1100°C and strain rate of 0.1–10 s?1 by using hot compression test and optical microscopy. The stress exponent and hot deformation energy were obtained by regression method to determine thermal deformation constitutive equation. The curve of stress versus strain is used, combined with high order polynomial fitting, to accurately determine the critical value of DRX. The relationships between critical strain, critical stress, and Z parameter of the bridge weathering steel were obtained by regression method. Moreover, the influence factors of DRX kinetics of the bridge weathering steel were studied in the light of the experimental results. It is shown that the strain rate has a more significant effect on the rate of DRX than that of the deformation temperature, and there is almost 0.85 orders of magnitude increment in the rate of DRX as the strain rate increases an order of magnitude. The dynamically recrystallized grain size can be decreased with decreasing the deformation temperature and increasing the strain rate during the austenite deformation.  相似文献   

7.
8.
Large-scale molecular dynamics (MD) simulations are used to understand the macroscopic yield behavior of nanocrystalline Cu with an average grain size of 6 nm at high strain rates. The MD simulations at strain rates varying from 109 s−1 to 8 × 109 s−1 suggest an asymmetry in the flow stress values in tension and compression, with the nanocrystalline metal being stronger in compression than in tension. The tension-compression strength asymmetry is very small at 109 s−1, but increases with increasing strain rate. The calculated yield stresses and flow stresses under combined biaxial loading conditions (X-Y) gives a locus of points that can be described with a traditional ellipse. An asymmetry parameter is introduced that allows for the incorporation of the small tension-compression asymmetry. The biaxial yield surface (X-Y) is calculated for different values of stress in the Z direction, the superposition of which gives a full three-dimensional (3-D) yield surface. The 3-D yield surface shows a cylinder that is symmetric around the hydrostatic axis. These results suggest that a von Mises-type yield criterion can be used to understand the macroscopic deformation behavior of nanocrystalline Cu with a grain size in the inverse Hall–Petch regime at high strain rates.  相似文献   

9.
The hot deformation behavior of aluminum of different purities has been studied in the temperature range of 250 °C to 600 °C and strain-rate range of 10 3 to 102 s’1. On the basis of the flow stress data, the strain-rate sensitivity (m) of the material is evaluated and used for establishing power dissipation maps following the Dynamic Materials Model. These maps depict the variation of the efficiency of power dissipation [η = 2m/(m +1)] with temperature and strain rate. A domain of dynamic recrystallization (DRX) could be identified in these maps. While the strain rate at which the efficiency peak occurred in this domain is 10-3 s−1 the DRX temperature is purity dependent and is 375 °C for 99.999 pct Al, 450 °C for 99.995 pct Al, 550 °C for 99.94 pct Al, and 600 °C for 99.5 pct Al. The maximum efficiency of power dissipation for DRX in aluminum is about 55 pct. The sigmoidal increase of grain size with temperature in the DRX domain and the decrease in the DRX temperature with increase in the purity of aluminum are very similar to that observed in static recrystallization, although DRX occurred at much higher temperatures.  相似文献   

10.
The evolution mechanisms of dislocation microstructures and new grains at high strains of above 4 were studied by means of multiple compression of a polycrystalline copper (99.99 pct). Deformation was carried out by multipass compression with changing of the loading direction in 90 deg in each pass at temperatures of 473 K to 573 K (0.35 to 0.42 T m ) under a strain rate of 10−3 s−1. The flow stresses increase to a peak followed by a work softening accompanied mainly by dynamic recrystallization (DRX) at 523 K to 573 K. In contrast, the steady-state-like flow appears at 473K accompanied with the development of fine grains at strains as high as 4.2. The relationship of flow stress to the new grain size evolved can be expressed by a power law function with a grain size exponent of about −0.35, which is different from −0.75 for high-temperature DRX at above 0.5 T m . At 473 K, misorientations of deformation-induced dislocation subboundaries increase with increasing strain, finally leading to the evolution of new grains. It is concluded that the dynamic grain formation at 473 K cannot result from DRX, but from the evolution of deformation-induced dislocation subboundaries with high misorientations and, concurrently, the operation of dynamic recovery.  相似文献   

11.
12.
The hot-working characteristics of IN-718 are studied in the temperature range 900 °C to 1200 °C and strain rate range 0.001 to 100 s−1 using hot compression tests. Processing maps for hot working are developed on the basis of the strain-rate sensitivity variations with temperature and strain rate and interpreted using a dynamic materials model. The map exhibits two domains of dynamic recrystallization (DRX): one occurring at 950 °C and 0.001 s−1 with an efficiency of power dissipation of 37 pct and the other at 1200 °C and 0.1 s−1 with an efficiency of 40 pct. Dynamic recrystallization in the former domain is nucleated by the δ(Ni3Nb) precipitates and results in fine-grained microstructure. In the high-temperature DRX domain, carbides dissolve in the matrix and make interstitial carbon atoms available for increasing the rate of dislocation generation for DRX nucleation. It is recommended that IN-718 may be hot-forged initially at 1200 °C and 0.1 s−1 and finish-forged at 950 °C and 0.001 s−1 so that fine-grained structure may be achieved. The available forging practice validates these results from processing maps. At temperatures lower than 1000 °C and strain rates higher than 1 s−1 the material exhibits adiabatic shear bands. Also, at temperatures higher than 1150°C and strain rates more than 1s−1, IN-718 exhibits intercrystalline cracking. Both these regimes may be avoided in hotworking IN-718.  相似文献   

13.
Plane strain compression tests were performed on a low-carbon steel from 550 °C to 700 °C (ferritephase range) at strain rates of 10 to 5 × 10−4 s−1, and the deformation microstructure evolution was investigated by means of scanning electron microscopy, transmission electron microscopy (TEM), and electron backscattered diffraction (EBSD). The results indicate that under the present deformation conditions, dynamic recrystallization of ferrite can occur in the low-carbon steel and lead to grain refinement. With increasing Zener-Hollomon parameter Z, the mechanism of this process changes from discontinuous dynamic recrystallization to continuous dynamic recrystallization; the turning point is approximately at Z=1 × 1016 s−1. The increase of parameter Z leads to the decrease of recrystallized grain size of ferrite under steady state of deformation, and can lead to the formation of ultrafine microstructures with average grain size of about 2 μm.  相似文献   

14.
The hot deformation behavior of as-cast AISI M2high-speed steel containing mischmetal(RE)has been investigated on a Gleeble-3500simulator in the temperature range of 1 000-1 150℃and strain rate range of 0.01-10 s-1 at true strain of 1.0.The mechanical behavior has been characterized using stress-strain curve analysis,kinetic analysis,processing maps,etc.Metallographic investigation was performed to evaluate the mechanism of flow instability.The results show that the deformation activation energy decreases with increasing deformation temperature; the efficiency of power dissipation increases with decreasing strain rate and increasing temperature;flow instability is observed at low-to-medium temperature and higher strain rate region when the strain is smaller,but extends to lower strain rate and high temperature regions with the increment of strain,in which it is manifested as flow localization near the grain boundary.Hot deformation equations and processing maps are obtained.The optimal processing window is suggested and the deformation mechanism is dynamic recrystallization(DRX).  相似文献   

15.
The hot deformation behavior of AISI 410 martensitic stainless steel was investigated by conducting hot compression tests between 1173 K (900 °C) and 1423 K (1150 °C) and between strain rates of 0.001 s−1 to 1 s−1. The hyperbolic sine function described the relation well between flow stress at a given strain and the Zener–Hollomon parameter (Z). The variation of flow stress with deformation temperature gave the average value of apparent activation energy as 448 kJ/mol. The strain and stress corresponding to two important points associated with flow curve (i.e., peak strain and the onset of steady-state flow) were related to the Z parameter using power-law equations. A model also was proposed based on the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation to estimate the fractional softening of dynamic recrystallization at any given strain. This model can be used readily for the prediction of flow stress. The values of n and k, material constants in the JMAK equation, were determined for the studied material. The strains regarding the peak and the onset of steady-state flow were formulated in term of applied strain rate and the constants of the JMAK equation. A good agreement was found between the predicted strains and those obtained by the experimental work.  相似文献   

16.
The constitutive flow behavior of sintered cobalt in the temperature range 873 to 1473 K (600 to 1200 °C) and at strain rates from 0.001 to 10 s−1 has been studied using constant true strain rate hot compression tests. On the basis of these data, a processing map has been generated that depicts the variation of strain rate sensitivity with temperature and strain rate. The processing map reveals a domain of dynamic recrystallization (DRX) with an optimum condition of processing at 1273 K (1000 °C) and at 10−3 s−1. When deformed within the domain, the stress-strain curves exhibit a single peak followed by flow softening, leading to steady-state behavior. In addition to this, a recently developed approach based on flow curve analysis is used to study the DRX kinetics, which is found to follow an Avrami-type relation.  相似文献   

17.
Lei Wang  Dao-Chun Hu 《钢铁冶炼》2013,40(4):335-342
The high-temperature deformation behaviours of low carbon steel QD08 were investigated by hot compression tests over temperatures from 1000 to 1200°C and strain rates from 0.1 to 10 s?1. The processing map was obtained by superimposition of the power dissipation and the instability maps and the regions having the lowest strain rate sensitivity added for more clarification of low and high workability regions. The results show that the security domain mainly of hot deformation with a higher powder dissipation factor and maintain a smooth variation, by the metallographic observations, the grain refinement by DRX under the stable deformation conditions. On the basis of processing map and microstructure evolution, the optimal deformation processing parameters are the hot deformation temperature range from 1070 to 1100°C, and strain rates range from 5 to 10 s?1.  相似文献   

18.
W. Feng  F. Qin 《钢铁冶炼》2018,45(4):317-324
The processing map of 20CrMnTiH steel is developed by using the dynamic material model according to the hot compression experiments, performed on a Gleeble-3500 thermal simulator at the temperature range of 850–1150°C and the strain rate of 0.01–1?s?1. Hot workability characteristics of 20CrMnTiH steel are analysed based on the developed processing map. The safe deformation regions with higher power dissipation efficiency η exhibit the dynamic recrystallisation (DRX) mechanism and show fine and homogeneous microstructure. The unstable regions with negative instability coefficient ξ occur at both lower temperature with all strain rates and at high temperature with high strain rate at the strain of 0.2. The area of instability gradually decreases with the increasing strain and only appears at lower temperature and higher strain rate when the strain is above 0.2. The unstable regions indicate the flow localisation by microstructure analysis. Combining with the developed processing map with DRX behaviour, the optimal values of hot processing parameters for 20CrMnTiH steel are obtained to achieve good hot workability and small grains sizes at the process parameters ranged at 1036–1070°C/0.1–1?s?1 and 918–985°C/0.01–0.014?s?1.  相似文献   

19.
This article discusses the role of twinning on dynamic recrystallization (DRX) and microstructural evolution during moderate to high strain rate (0.1 to 100 s−1) hot deformation (1173 to 1373 K (900 to 1100 °C) range) in a Ti-modified austenitic stainless steel (alloy D9). The extent of DRX increased with increasing strain rate and temperature in the range of hot working parameters employed in the present study. The acceleration of DRX with strain rate is attributed to increased rate of dislocation accumulation during high strain rate deformation as well as adiabatic temperature rise. The DRX grains were found to be twinned and a linear relationship was observed between the area fraction of DRX grains and the fraction of Σ3 boundaries. Analysis of misorientations revealed that the majority of these Σ3 boundaries are newly formed coherent twin boundaries during DRX. Interaction of pre-existing Σ3 boundaries that may regenerate new Σ3 boundaries did not seem to occur frequently during DRX. The majority of the twin boundaries are found within the DRX grains, signifying that these annealing twins are mainly formed by “growth accidents” during the expansion of the DRX grains. It is suggested that annealing twins play an important role during nucleation and subsequent expansion of the DRX process in alloy D9.  相似文献   

20.

Hot compression tests were performed on Inconel 718 and ALLVAC 718 PLUS (718+) at temperatures and strain rates in ranges of 1223 K to 1373 K (950 °C to 1100 °C) and 0.001–1 s−1, respectively. Discontinuous yield behavior was observed in the flow curves of both alloys. For both alloys, the drop in stress at the yield point (yield drop) was maximized at 0.01 to 1 s−1. The alloy 718+ showed larger yield drop than 718 over the studied deformation conditions. The different yield behaviors were attributed to the various chemical compositions. The peak strain for both alloys increased in temperature range of 1223 K to 1273 K (950 to 1000 °C) and strain rates of 0.01 to 1 s−1. This uncommon behavior was ascribed to the change in the mechanism of microstructural evolution from continuous to discontinuous dynamic recrystallization (DRX). The kinetics of DRX was described by the Avrami equation and the exponent was determined at different deformation conditions. The Avrami exponent increased in the middle values of Zener–Hollomon (Z) parameters, i.e., 29.3 < lnZ < 32.9 for 718 and 31.4 < lnZ < 34.5 for 718+. The unusual variation of the Avrami exponent was attributed to the change in the mechanism of DRX.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号