首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
长间隙放电是研究地面物体雷电屏蔽问题的最有效手段之一。首先介绍了国内外在雷电击距、直击雷防护措施的屏蔽性能试验和雷电迎面先导过程研究3个方面所取得的进展,并结合最新开展的长达6 m间隙尺度的放电试验观测,对现阶段上述3个方面研究所存在的问题进行了分析。认为基于雷电击距建立的电气几何模型(electric geometry model,EGM)仅适用于小尺度目标物的雷电屏蔽性能分析,现有的雷电屏蔽模拟试验方法仅能近似模拟不存在雷电迎面先导时的雷击过程,无法完全证明以提前流注发射模型装置为代表的非传统防雷装置具有比传统措施更优越的屏蔽性能。大尺度目标物的雷电屏蔽问题应聚焦于雷电迎面先导过程的研究,建立并完善雷电迎面先导过程的模拟试验方法和物理仿真模型。  相似文献   

2.
侧针对改善特高压交流输电线路雷电屏蔽的实验观测   总被引:2,自引:1,他引:1  
为探讨避雷线加装水平侧针对改善特高压交流输电线路雷电屏蔽性能的机理,开展了1:10和1:20特高压交流线路缩比模型下雷电屏蔽模拟实验及其放电观测,对实验结果进行了分析,并重点结合放电物理过程探讨了放电击中点的选择性和侧针屏蔽增效的机理。研究发现:下行先导初期发展过程中随机取向与各目的物迎面放电的竞争过程都与放电击中点的选择密切相关,下行放电与迎面放电也是相互作用与影响的;在各种间隙结构下,侧针的长度在大于对应间隙的临界电晕半径时才能起到明显的屏蔽增效作用。  相似文献   

3.
基于先导放电理论的雷击上行先导起始研究   总被引:1,自引:0,他引:1  
作为输电线路雷电屏蔽分析模型中的关键物理过程,关于上行先导起始机制及其判据的研究尚待深入。基于先导放电物理机制,建立了导线表面稳定上行先导起始仿真模型,并利用模拟电荷法计算分析了导线周围电场分布特征。结果表明,稳定先导起始时,导线周围平均电场强度达到流注场强的区域几乎不受雷电参数和导线参数的影响,由此提出一种上行先导起始新判据,即当线路周围一定区域内的平均电场强度达到流注场强时,稳定连续的上行先导起始。长间隙放电观测结果及对国内外典型线路雷电屏蔽性能的计算结果与运行数据相符,验证了该判据的有效性。通过与以往上行先导起始判据的比较分析,指出已有的输电线路先导起始判据可能会夸大上行先导的引雷作用。  相似文献   

4.
避雷针迎面先导发展物理过程仿真研究   总被引:5,自引:0,他引:5  
开展避雷针迎面先导起始及发展过程的仿真研究对建立正确的雷电屏蔽分析模型具有重要意义。基于长间隙放电的物理机制,建立了包括正极性电晕起始与流注发展、先导起始、先导–流注体系发展等物理过程的迎面先导发展物理过程仿真模型,并使用实验室和自然雷电条件下的迎面先导发展过程观测结果对其进行了验证,最后采用该模型对避雷针迎面先导特性进行了分析讨论。结果表明:该模型的计算结果与实验室条件下和一次自然雷电条件下获得的正极性迎面先导发展过程观测结果相吻合;迎面先导起始时刻随着雷电流幅值和避雷针高度的增加而提前;避雷针迎面先导的发展过程主要受雷电流幅值、避雷针高度影响,其发展速度随着下行先导的趋近而逐渐增加;由实验室条件下的正极性棒–板间隙放电获得的先导起始特性直接用于自然雷电中正极性迎面先导起始的计算,以及在迎面先导发展过程的计算中假设迎面先导发展速度与下行先导发展速度成一固定比例是不合适的。  相似文献   

5.
冯杰  雷霆  吴廷祥  黄进 《广东电力》2012,(2):24-28,95
基于长空气间隙的放电理论建立雷电屏蔽的先导发展模型,利用该模型进行特高压直流线路雷击过程仿真,并计算文献中给出的实际线路的雷电屏蔽性能。仿真计算结果表明:特高压线路存在明显的“回头雷击”现象;利用雷电屏蔽模型计算的结果较电气几何模型计算的结果更接近实际运行数据,可用于工程实际仿真计算。  相似文献   

6.
云广特高压直流输电线路雷电屏蔽性能研究   总被引:4,自引:4,他引:0  
为评估、计算输电线路雷电屏蔽性能即绕击性能,基于长空气间隙放电理论建立了特高压直流输电线路雷电屏蔽的先导发展模型,并用该模型计算了拟建立的云广±800 kV直流特高压输电线路雷电屏蔽性能。计算结果表明:随着地面倾角、保护角的增加,线路屏蔽失效率明显增加,特高压直流输电线路最好采用负保护角运行。  相似文献   

7.
输电线路雷电屏蔽性能模拟试验研究是线路雷电防护研究的重要手段。根据实际观测的雷电梯级先导停滞时间,确定采用负极性20/2 500?s和负极性80/2 500?s两种操作冲击电压波形模拟雷电最后一击的放电过程,针对1 000 kV特高压线路SZ322型杆塔开展了模型比例为1:12.5的大尺寸雷电屏蔽性能模拟试验。试验结果表明:导线接地方式明显影响导线的放电被击概率;正极性偏置电压将增大导线的放电被击概率,负极性偏置电压将减小导线的放电被击概率;波头时间对放电路径影响不明显;导线被击概率随着线路保护角的增大而增大。所得结果为后续特高压线路雷电屏蔽性能试验的开展提供参考借鉴。  相似文献   

8.
为研究影响输电线路雷电屏蔽性能的因素,选取500 kV交流输电线路为对象,针对电极沿档距方向放置位置、雷电先导入射角、线路保护角、地面倾斜角、冲击电压类型和模型比例等诸多因素开展了试验研究。近十万次放电试验表明,绕击概率随电极倾斜角度和线路保护角增大而增大、随地面倾斜角增大而先增大后减小。观测到了主放电击中导线(避雷线)的同时,也观测到避雷线(导线)上竞争失利的残余迎面流注,并绘制了1:80、1:40和1:25这3种缩比模型分别在标准雷电冲击(-1.2μs/50μs)和标准操作冲击(-250μs/2 500μs)下的绕击空间分布图。最后结合定量计算,建议将电极放置于能够反映线路平均绕击概率的区域,并采用标准雷电波进行小尺寸雷电屏蔽模拟试验,为今后更深入进行特高压线路防雷性能试验研究提供了参考。  相似文献   

9.
特高压交流输电线路的雷电屏蔽分析模型   总被引:3,自引:2,他引:1  
绕击是引起超高压、特高压输电线路雷击跳闸的主要原因。将低电压等级输电线路绕击防护经验直接外推至更高电压等级时具有一定的局限性,可能导致新建线路的绕击耐雷性能显著低于预期值。基于先导发展的绕击分析模型细致地考虑了影响雷击发展物理过程各种因素的影响,较传统工程化分析方法更适用于新建电压等级线路的绕击性能评估。但由于对雷击物理过程和长间隙放电机理认识的不足,不同时期不同学者对雷击过程描述所采用的模型和方法不尽相同,若将现有学者所提出的绕击分析模型直接用于工程中,不同分析模型所得结果差异较大。为此,通过对比现有的雷电观测资料,认为Cooray提出的下行先导通道模型与最新的雷电观测结果比较相符;对迎面先导起始工程判据的对比分析结果表明,当导线对地高度10.0 m时,Rizk感应电压法和临界电晕半径法计算得的先导起始电压结果一致,外推至实际导线对地高度时,Rizk感应电压法的计算结果与长间隙放电理论相违背;同时依据长间隙放电理论,提出了下行先导和迎面先导的相对速度比近似等于迎面先导通道单位长度电压降与导线感应电压增量之比的迎面先导持续发展条件,建立了基于Schwarz-Christoffel变换的能考虑任意地形的2维特高压输电线路雷电屏蔽分析模型;该分析模型解释了传统先导发展模型无法解释的特高压输电线路ZMP2和ZBS2型杆塔的中相屏蔽问题。计算结果表明,在典型的平原、斜坡和山顶地形下,ZMP2和ZBS2型杆塔的绕击跳闸率低于设计预期值0.1次/(100 km.a)。  相似文献   

10.
导线电压对电气几何模型的雷电击距的影响   总被引:1,自引:1,他引:1  
使用击距描述的电气几何模型广泛用于输电线路的雷电绕击分析。由于没有考虑导线工作电压的影响,导致其分析超高压及特高压输电线路的雷电绕击概率与实际运行数据存在一定的偏差。本文采用基于电磁场理论和模拟电荷法的雷电先导发展模型模拟向下发展的雷电先导的发展过程,分析了雷电击距与雷电流、导体高度和导体电压之间的关系,提出了考虑工作电压后水平导体雷电击距的修正方法。  相似文献   

11.
伏进  杨庆  司马文霞 《高电压技术》2008,34(12):2542-2546
The operation data obtained abroad indicates that shielding failure in UHV transmission lines mostly accounts for the tripping-out accidents introduced by lightning striking the transmission line.Based on the discharge theories of long air gap and randomness theory,a leader progression model of lightning shielding failure is presented in this paper.The random characteristics of the downward and upward leader are simulated in this model.The ground slope angel is also considered in this model by using coordinate transformation.Moreover,the system voltage is also taken into consideration in this model.The simulation results show that the good agreement between this model and the field data.And the results suggest that return striking exist obviously in UHV transmission line.  相似文献   

12.
对特高压直流线路绕击屏蔽的一种新观点   总被引:2,自引:0,他引:2  
陈智  陈俊武  高峻 《高电压技术》2006,32(12):142-145
随着极线工作电压的提高,以单侧地线、极线及雷先导作为雷屏蔽研究模型已满足不了工程实际的需要。因此,以模拟电荷法为基础,将雷电先导、两侧地线、极线作为整体研究对象,考虑极线工作电压及极线分裂数,计算雷先导垂直下行过程中各导线表面场强变化,并运用Peek判据确定各导线对应的雷先导一级定位高度,合理解释特高压直流线路中存在的正极线绕击概率大的问题,提出了新的绕击屏蔽观点:特高压直流架空线路中仅负极线侧避雷线和正极线产生上行先导竞争拦截雷下行先导,正极线侧的避雷线屏蔽功能被削弱,未起到完全保护正极线的作用。  相似文献   

13.
开展负极性雷电地闪过程中地面物体正极性上行先导特性的模拟试验研究是完善雷电屏蔽分析模型的基础,选择正确的模拟试验方法十分必要。分析了采用棒–棒、棒–板及板–棒等典型放电间隙结构的模拟试验方法的电场特征,研究了各种方法获得的正极性先导特性,并通过与自然雷电下的电场特征及上行先导特性进行对比,评价了各模拟试验方法的等价性。结果表明:采用棒–棒间隙和棒–板间隙无法模拟自然雷电下地面物体附近的电场空间分布特性;采用板–棒间隙可以模拟自然雷电下地面物体附近的电场空间分布特性,但传统的冲击电压发生器无法产生与自然雷电下行先导趋近地面过程中电场时变规律相同的冲击电压。因此,提出了研发一种基于电力电子技术、能够模拟自然雷电下电场时变规律的高压任意波形发生器,并结合板–棒间隙结构,形成正确有效的正极性上行先导特性模拟试验方法。  相似文献   

14.
±500 kV直流输电线路雷电屏蔽模拟试验研究   总被引:4,自引:0,他引:4  
模拟试验是研究超/特高压输电线路绕击特性的一个重要手段,针对直流线路标称电场对线路雷电绕击特性的影响问题开展模拟试验研究,首先从模拟试验比例尺的确定、地闪先导过程近区电场的模拟和模型线路标称电场模拟三方面论证了试验的物理等价性;在计及直流电压的条件下,通过放电试验得出了±500kV输电线路G4–40型杆塔绕击空间分布;试验中观测到主放电击中导线(或避雷线)的同时,避雷线(或导线)上残存的迎面流注。依据试验现象,定性分析了标称电场对绕击特性的影响机理;对试验结果定量分析表明,计及直流电压后G4–40型杆塔正极绕击率为不考虑直流电压时的1.79倍。  相似文献   

15.
输电线路绕击防护的新措施   总被引:23,自引:9,他引:14  
针对当前输电线路故障开断重要原因的雷电绕击事故阐述了输电线路雷电屏蔽体系的构成、绕击发生的原因及绕击防护新措施的思路,提出了地线上加装水平侧向短针的绕击防治新措施。雷击模拟试验的研究结果表明,水平短针长度大于间隙的临界电晕半径时,该措施能显著防治绕击事故。根据长间隙放电理论、现场运行经验和模拟试验结果提出实际线路加装长度20cm或稍长的侧针,保护范围约6m。  相似文献   

16.
高压输电线路先导发展绕击分析模型研究   总被引:16,自引:13,他引:3  
曾嵘  耿屹楠  李雨  何金良 《高电压技术》2008,34(10):2041-2046
雷电绕击是关系到特(超)高压输电线路安全稳定运行的关键问题之一。针对特(超)高压输电线路的特点,在总结前人研究结果的基础上,提出适用于特(超)高压线路的雷电上行先导起始判据,建立了基于先导发展法的绕击模型,并以日本特高压同塔双回线路的运行经验对模型进行了验证。基于该模型,对不同地形条件下、考虑线路运行电压的特高压直流线路的雷击问题进行研究,为改善线路的防雷性能提供帮助。  相似文献   

17.
大量线路雷电跳闸故障统计资料显示,雷电绕击是引起电压等级为500 kV及以上输电线路雷击跳闸的主要原因。综述了几种有代表性的输电线路雷电绕击分析方法,并介绍了在南方电网昆明特高压基地开展的雷电绕击模拟试验研究。试验模拟了下行雷电先导接近线路时输电线路上行先导起始和发展的过程。试验结果表明,导线、地线会产生上行先导放电,且地线上行先导放电起始易于导线,导线、地线上行先导发展速度约为1.2~2.4 cm/?s。该结果可为雷电绕击分析提供了试验基础和物理参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号