首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Plasmodium berghei-infected mouse model is a well-recognized model for human cerebral malaria. Mice infected with P. berghei exhibit (i) metabolic acidosis (pH < 7.3) associated with elevated plasma lactate concentrations, (ii) significant (P < 0.05) vascular leakage in their lungs, hearts, kidneys, and brains, (ii) significantly (P < 0.05) higher cell and serum glutamate concentrations, and (iv) significantly (P < 0.05) lower mean arterial blood pressures. Because these complications are similar to those of septic shock, the simplest interpretation of these findings is that the mice develop shock brought on by the P. berghei infection. To determine whether the immune system and specifically CD8(+) T cells mediate the key features of shock during P. berghei malaria, we depleted CD8(+) T cells by monoclonal antibody (mAb) treatment and assessed the complications of malarial shock. P. berghei-infected mice depleted of CD8(+) T cells by mAb treatment had significantly reduced vascular leakage in their hearts, brains, lungs, and kidneys compared with infected controls treated with rat immunoglobulin G. CD8-depleted mice were significantly (P < 0.05) protected from lactic acidosis, glutamate buildup, and diminished HCO(3)(-) levels. Although the blood pressure decreased in anti-CD8 mAb-treated mice infected with P. berghei, the cardiac output, as assessed by echocardiography, was similar to that of uninfected control mice. Collectively, our results indicate that (i) pathogenesis similar to septic shock occurs during experimental P. berghei malaria, (ii) respiratory distress with lactic acidosis occurs during P. berghei malaria, and (iii) most components of circulatory shock are ameliorated by depletion of CD8(+) T cells.  相似文献   

2.
T-cell immunity is critical for survival of hosts infected with Toxoplasma gondii. Among the cells in the T-cell population, CD8(+) T cells are considered the major effector cells against this parasite. It is believed that CD4(+) T cells may be crucial for induction of the CD8(+)-T-cell response against T. gondii. In the present study, CD4(-/-) mice were used to evaluate the role of conventional CD4(+) T cells in the immune response against T. gondii infection. CD4(-/-) mice infected with T. gondii exhibited lower gamma interferon (IFN-gamma) messages in the majority of their tissues. As a result, mortality due to a hyperinflammatory response was prevented in these animals. Interestingly, T. gondii infection induced a normal antigen-specific CD8(+)-T-cell immune response in CD4(-/-) mice. No difference in generation of precursor cytotoxic T lymphocytes (pCTL) or in IFN-gamma production by the CD8(+)-T-cell populations from the knockout and wild-type animals was observed. However, the mutant mice were not able to sustain CD8(+)-T-cell immunity. At 180 days after infection, the CD8(+)-T-cell response in the knockout mice was depressed, as determined by pCTL and IFN-gamma assays. Loss of CD8(+)-T-cell immunity at this time was confirmed by adoptive transfer experiments. Purified CD8(+) T cells from CD4(-/-) donors that had been immunized 180 days earlier failed to protect the recipient mice against a lethal infection. Our study demonstrated that although CD8(+)-T-cell immunity can be induced in the absence of conventional CD4(+) T cells, it cannot be maintained without such cells.  相似文献   

3.
Although it is well established that CD4(+) T cells are required for the protective immune response against tuberculosis (TB), there is some evidence that CD8(+) T cells are also involved in the host response to Mycobacterium tuberculosis. There is, however, a paucity of information on the pulmonary CD8(+) T-cell response during infection. We therefore have compared the changes in both CD8(+) and CD4(+) T cells following aerosol infection with M. tuberculosis. There was an observed delay between the peak of infection and the activated T-cell response in the lung. The kinetics of CD8(+) and CD4(+) T-cell responses in the lung were identical, both peaking at week 8, 4 weeks later than the peak of cellular response in draining lymph nodes. Similar changes in activation/memory phenotypes occurred on the pulmonary CD8(+) and CD4(+) T cells. Following in vitro restimulation, both subsets synthesized gamma interferon, a cytokine essential for controlling M. tuberculosis infection. Since lung CD8(+) T cells are actively expanded during aerosol M. tuberculosis infection, it is important that both CD8(+) and CD4(+) T cells be targeted in the design of future TB vaccines.  相似文献   

4.
The role of CD8 T cells in controlling Mycobacterium tuberculosis infections in mice was confirmed by comparing the levels of growth of the organism in control, major histocompatibility complex class II knockout, and athymic mice and by transferring T-cell populations into athymic mice. By using donor mice which were incapable of making gamma interferon (IFN-γ), it was shown that IFN-γ production was essential for CD8 cell mediation of protective immunity against M. tuberculosis.

Cell-mediated immunity is crucial for the control of mycobacterial infections. Athymic mice (4) and mice whose T cells have been depleted (22, 23) are much more susceptible to infection with mycobacteria than euthymic or unmanipulated mice. However, the contributions of the different components of the T-cell response are unclear. CD4 T cells are thought to play a major role in controlling infections with the primary human tubercle bacillus, Mycobacterium tuberculosis; individuals with reduced CD4 counts, from infection with human immunodeficiency virus, for example, are known to be more susceptible to M. tuberculosis infections (12). Activation of CD4 cells by antigen in association with major histocompatibility complex (MHC) class II molecules results in clonal expansion and the production of cytokines, most notably gamma interferon (IFN-γ), which activate macrophages so that they become mycobactericidal. Mice with deletions of the IFN-γ gene are much more susceptible to M. tuberculosis infection than wild-type mice (5, 9). However, in addition to CD4 cells, other components of the cell-mediated response are thought to play roles in controlling infection with M. tuberculosis. For example, CD8 T cells have been shown to be involved (20, 24): β2 microglobulin-deficient knockout mice, which lack an effective CD8 response, show increased susceptibility to M. tuberculosis infection (10). Other cell types, such as T cells bearing the γ/δ T-cell receptor (19) and NK cells (1), are also thought to have roles in protection against intracellular bacteria, while a number of T cells with novel phenotypes and unknown functions have been shown to recognize mycobacterial antigens (2, 28).CD8 T cells are known to contribute to the protective response against M. tuberculosis, but the mechanism(s) by which they exert this protective effect is unknown. CD8 T cells produce a range of cytokines, including IFN-γ (11, 17, 25, 26), but their primary role is thought to be cytotoxic. However, it has recently been shown that mice with a targeted disruption in either the perforin gene or the granzyme gene and mice which are Fas receptor defective are no more susceptible to infection with M. tuberculosis than are wild-type mice (6, 16). Since perforin (13, 18) and Fas-Fas ligand interactions (21, 27, 31) are thought to be the primary mechanisms of cytotoxicity mediated by CD8 T cells, such cells may contribute their antimycobacterial activity through noncytotoxic pathways.In this study, we have used MHC class II-deficient mice and athymic mice to confirm the role of non-CD4 T-cell-mediated mechanisms in protection against M. tuberculosis infection. Using transfer of purified CD4 and CD8 cells into athymic mice, we have demonstrated that these cells contribute equally to protective immunity in this system. However, by using mice with deletions of the IFN-γ gene as T-cell donors, we have shown that production of IFN-γ is required in order for CD8 T cells to exert their antimycobacterial effect.In preliminary experiments, the levels of growth of M. tuberculosis in MHC class II knockout, athymic, and normal mice were compared. MHC class II knockout (Aβ−/−) mice were obtained as a breeding nucleus (kindly provided by D. Gray, Hammersmith Hospital, London, United Kingdom, with permission from D. Mathis, Institut National de la Santé et de la Recherche Médicale). These mice were bred from heterozygous (Aβ+/−) parents and genotyped as described previously (7). Heterozygous littermates were used as controls. Stock cultures of M. tuberculosis H37Rv were grown in Dubos 7H9 broth for 14 days, and then they were aliquoted and stored in liquid nitrogen. For infection, aliquots were thawed, diluted in phosphate-buffered saline, and inoculated intraperitoneally into mice. The infection was monitored by removing the lungs and spleens of infected mice at various intervals; the baseline level of infection of each tissue was estimated by harvesting organs from the mice 18 h after infection and determining viable counts. The tissues were weighed and homogenized by shaking with 2-mm-diameter glass beads in chilled saline with a Mini-Bead Beater (Biospec Products, Bartlesville, Okla.), and 10-fold dilutions of the suspension were plated onto Dubos 7H11 agar with Dubos oleic albumic complex supplement (Difco Laboratories, Surrey, United Kingdom). Numbers of CFU were determined after the plates had been incubated at 37°C for approximately 20 days. The results are shown in Fig. Fig.1A1A and B. In control mice, there was a transient increase in bacterial counts in the spleen, followed by a steady decline over 60 days and then by a levelling out of the infection at approximately 104 CFU per g of tissue. In MHC class II knockout mice, there was an initial growth of the infection over the first 60 days, followed by a plateau phase during which the infection appeared to be controlled but was significantly more severe than in wild-type mice (Fig. (Fig.1A).1A). In lung tissue (Fig. (Fig.1B),1B), a similar pattern emerged, except that in the MHC class II knockout mice, control of the infection broke down in some of the mice after about 60 days, when there was a sudden increase in bacterial counts. By day 80, counts had reached approximately 107 CFU per g of tissue, a 10,000-fold increase over the counts seen in wild-type mice. Open in a separate windowFIG. 1Growth of M. tuberculosis in the tissues of MHC class II knockout, control, and athymic mice. (A and B) Growth in spleens and lungs, respectively, of MHC class II knockout mice (•) and their wild-type littermates (▪). (C and D) Growth in spleens and lungs, respectively, of MHC class II knockout (•) and athymic (▴) mice. Data are the geometric means ± the standard errors of the means for three to five mice. An asterisk indicates a significant difference between values for MHC class II knockout and control mice (P < 0.05 by Students’ t test). A double asterisk denotes that at the indicated time, all remaining mice in the group were killed because of the widely disseminated nature of the infection.These results emphasize the importance of the MHC class II-CD4 T-cell pathway in controlling M. tuberculosis infection. However, in spite of the fact that after the first few days of infection there was always a highly significant difference between the level of viable M. tuberculosis organisms in MHC class II knockout mice and the level in control mice, some control of bacterial multiplication did appear to occur in the MHC class II knockout mice. In order to demonstrate that this apparent partial control of the infection in MHC class II knockout mice was mediated by T cells, we compared growth in these mice with growth in athymic mice. Athymic (nude) BALB/c mice were obtained from a breeding colony at the National Institute for Medical Research. Athymic and MHC class II knockout mice were infected intraperitoneally, and the infections were monitored as described above. Whereas the MHC class II knockout mice were again able to control the infection to some degree, growth in athymic mice was unchecked and the mice had to be killed at 40 days because of overwhelming infection (Fig. (Fig.1C1C and D).These results confirm the importance of CD4 cells in controlling M. tuberculosis infections but also suggest that a contribution is made by non-CD4-mediated mechanisms. It has previously been shown that depletion of CD8 cell populations in mice with anti-CD8 antibodies (20) or abolition of a CD8 response by disruption of the β2 microglobulin gene (10) renders mice highly susceptible to infection with M. tuberculosis. CD8 T cells have also been implicated in human tuberculosis; CD8+ T cells with specificity for mycobacterium-pulsed target cells have been described (14, 32), and an individual with recurrent tuberculosis was found to have a specific reduction in CD8 T cells (3).In order to investigate the contribution of CD8 T cells to the control of M. tuberculosis infections in mice, total spleen cells, CD4 T cells, and CD8 T cells were transferred from control BALB/c mice into infected athymic BALB/c mice. Splenocytes were incubated in hypotonic medium to lyse erythrocytes and washed twice. To obtain highly purified populations of CD4 and CD8 cells, cell suspensions were enriched by negative selection with T-cell-subset columns (R & D Systems Inc., Minneapolis, Minn.) according to the manufacturer’s instructions. The resulting populations were >90% CD4 or CD8 T cells, as determined by flow cytometric analysis. The cells were washed, resuspended in sterile saline, and injected intravenously such that recipient mice received 5 × 106 cells. The mice were then infected with M. tuberculosis, and organs were harvested 21 days later for CFU counts. The results of a typical experiment are shown in Fig. Fig.2.2. In athymic mice which had not received any transferred cells, the infection reached approximately 107 CFU per g in the lung (Fig. (Fig.2A)2A) and 108 CFU per g in the spleen (Fig. (Fig.2B).2B). Transfer of total spleen cells from naive BALB/c mice reduced the number of CFU 100- to 1,000-fold in both tissues. It appeared that CD4 and CD8 T cells contributed approximately equally to the observed protection. Open in a separate windowFIG. 2Infection of athymic mice with M. tuberculosis following transfer of splenocytes from euthymic mice. (A and B) Results for the lungs and spleen, respectively, of mice infected intravenously with approximately 106 CFU 21 days prior to harvest. Transfer of cells was carried out 24 h before infection. Data are the means ± the standard errors of the means for three to five mice. Mice received either no cells, total spleen cells, CD4 cells, or CD8 cells. All three groups of mice which received cells showed significantly reduced CFU counts compared to controls (P < 0.05 by Student’s t test).The mechanism by which CD8 T cells exert this antimycobacterial response is not understood. It has been suggested that the cytotoxicity of mycobacterium-laden target cells could be involved, perhaps through the release of M. tuberculosis bacilli from ineffective macrophages to cells with greater antimycobacterial potential (15). However, perforin or granzyme knockout mice and Fas receptor-defective mice, when infected, did not display any increased susceptibility to infection, compared to wild-type controls (6, 16). Interestingly, both the perforin knockout mice and the Fas receptor-defective mice had elevated levels of cytokines, including IFN-γ, in the absence of infection, and levels in infected mice were similar to those seen in wild-type mice (16). Thus, neither perforin-, granzyme-, nor Fas-mediated cytotoxicity appeared to be involved in the control of these experimental infections (6, 16). Conversely, however, Silva and colleagues (29) produced CD8+ T-cell clones which were capable of conferring protection against M. tuberculosis in recipient mice, and the level of protection correlated with the level of cytotoxic activity rather than with the level of IFN-γ secretion.In a recent study of human cytotoxic cells with mycobacterial specificity, it was found that CD4 CD8 T cells lysed macrophages through a Fas-Fas ligand interaction but the lysis was not associated with mycobacterial killing, whereas CD8+ T-cells lysed macrophages by a Fas-independent pathway and the lysis resulted in the killing of mycobacteria (30). The human T-cell lines used for these experiments were unusual in that they were CD1 restricted.Since CD8 T cells were clearly able to confer significant levels of protection against M. tuberculosis in our cell transfer model, we next investigated the role of IFN-γ in this protection. Again athymic mice were recipients of either total spleen cells or CD8 cells. This time, however, donor mice were either normal BALB/c mice or IFN-γ knockout mice (8) and recipient mice received 3 × 106 cells. The results (Fig. (Fig.3)3) clearly demonstrate the requirement for IFN-γ. Transfer of total spleen cells or CD8 T cells from normal mice gave protection, although the level of protection was slightly lower than that seen in the previous experiment (Fig. (Fig.2).2). This was probably because the number of cells transferred was lower (3 × 106 rather than 5 × 106). However, the protection seen in both organs was significant (P < 0.05). Importantly, transfer of cells from IFN-γ knockout mice gave no protection. Open in a separate windowFIG. 3Infection of athymic mice with M. tuberculosis following transfer of splenocytes from control BALB/c and IFN-γ knockout (IFN-γ −VE) BALB/c mice. (A and B) Results for the lungs and spleen, respectively. The experimental design was identical to that for Fig. Fig.2.2. Mice received either no cells, total spleen cells from wild-type BALB/c mice, CD8 cells from BALB/c mice, total spleen cells from IFN-γ knockout mice, or CD8 cells from IFN-γ knockout mice. Mice which received cells from control BALB/c mice (total spleen or CD8 cells) showed significantly reduced CFU counts compared to naive athymic mice (P < 0.05); there were no significant differences between values for naive athymic mice and mice which received either total spleen cells or CD8 cells from IFN-γ knockout BALB/c mice.Thus, the results reported in this study confirm the role of CD8 T cells in the control of M. tuberculosis infections in mice. We have also demonstrated that this control requires the ability of the CD8 cells to produce IFN-γ, suggesting that such cells may exert their effects through classical cytokine-mediated macrophage activation rather than through a cytotoxic mechanism. The recent demonstration that human CD1-restricted CD8 T cells were able to kill mycobacteria in vitro through a cytotoxicity-mediated pathway (30) suggests that different subpopulations of CD8 cells may have different effector mechanisms; since no murine equivalent of the CD1-restricted CD8 T cell has been described, this mechanism may be absent in mice. Alternatively, the results reported earlier for murine CD8 T-cell lines (29) or human CD8, CD1-restricted T-cell lines (30) may reflect the activity of primed or memory T cells, whereas the results reported in the present study reflect the activity of unprimed cells. Primed CD8 T cells have been shown to be hyperreactive to antigenic challenge in vitro and may employ different effector mechanisms. That production of IFN-γ by CD8 T cells is required in order to control infection has also been reported for viral infections (11, 26), where cytotoxicity has long been thought to be the major mechanism of CD8-mediated antiviral activity. IFN-γ and other cytokines have been shown to be major components of the mechanism by which hepatitis B virus is controlled in mice by CD8 cells without the killing of hepatocytes (11). The results reported in this study demonstrate that IFN-γ is essential for CD8-mediated protection against M. tuberculosis infection in mice.  相似文献   

5.
Cell-mediated immunity during the muscular phase of Trichinella infection in humans was studied. Cell proliferation, the phenotypic changes in the T-cell population, and expression and production of cytokines were examined by using peripheral blood mononuclear cells (PBMC) collected at different times postinfection from 10 individuals who had acquired Trichinella spiralis and five individuals who had acquired Trichinella britovi in two distinct outbreaks. T. spiralis and T. britovi crude worm extracts induced proliferation of PBMC from T. spiralis- and T. britovi-infected donors. Cytokine gene expression showed a predominant type 2 pattern for the entire period of infection studied, although gamma interferon (IFN-gamma) was expressed. Interleukin-2 (IL-2), IL-5, IL-10, and IFN-gamma production was found in PBMC of all donors. There was a good correspondence between the cytokine expression and production patterns. Changes in PBMC composition, with a trend toward an increase in CD8(+) lymphocyte counts, were observed.  相似文献   

6.
The flow cytometers that are currently supported by industry provide accurate CD4+-T-cell counts for monitoring human immunodeficiency virus disease but remain unaffordable for routine service work under resource-poor conditions. We therefore combined volumetric flow cytometry (measuring absolute lymphocyte counts in unit volumes of blood) and simpler protocols with generic monoclonal antibodies (MAbs) to increase cost efficiency. Volumetric absolute counts were generated using CD45/CD4 and CD45/CD8 MAb combinations in two parallel tubes. The percentage values for the various subsets were also determined within the leukocyte and lymphocyte populations utilizing a fully automated protocol. The levels of agreement between the newly developed method and the present industry standards, including both volumetric and bead-based systems using a full MAb panel for subset analysis, were tested by Bland-Altman analyses. The limits of agreement for CD4 counts generated by the volumetric methods using either CD45/CD4 (in a single tube) or the full Trio MAb panel (in three tubes) on the CytoronAbsolute flow cytometer were between −29 and +46 cells/mm3 with very little bias for CD4 counts (in favor of the Trio method: +8 CD4+ lymphocytes/mm3; 0.38% of lymphocytes). The limits of agreement for absolute CD4 counts yielded by the volumetric CD45/CD4 method and the bead-based method were between −118 and +98 cells/mm3, again with a negligible bias (−10 CD4+ lymphocytes/mm3). In the volumetric method using CD45/CD8, the strongly CD8+ cells were gated and the levels of agreement with the full Trio showed a minor bias (in favor of the Trio; +40 CD8+ cells/mm3; 5.2% of lymphocytes) without a significant influence on CD4/CD8 ratios. One trained flow cytometrist was able to process 300 to 400 stained tubes per day. This workload extrapolates to a throughput of >30,000 samples per year if both CD45/CD4 and CD45/CD8 stainings are performed for each patient or a throughput of >60,000 samples if only CD45/CD4 counts are tested in a single tube. Thus, on the basis of the high efficiency and excellent agreement with the present industry standards, volumetric flow cytometers with automated gating protocols and autobiosamplers, complemented by generic CD45, CD4, and CD8 MAbs used in two-color immunofluorescence, represent the most suitable arrangements for large regional laboratories in resource-poor settings.  相似文献   

7.
Understanding how existing antivector immunity impacts live vaccine delivery systems is critical when the same vector system may be used to deliver different antigens. We addressed the impact of antivector immunity, elicited by immunization with attenuated actA-deficient Listeria monocytogenes, on the CD8(+)-T-cell response to a well-characterized lymphocytic choriomeningitis virus epitope, NP118-126, delivered by infection with recombinant L. monocytogenes. Challenges of immune mice with actA-deficient and with wild-type recombinant L. monocytogenes generated similar numbers of CD8(+) T cells specific for the NP118-126 epitope. High-dose immunization with actA-deficient L. monocytogenes resulted in substantial numbers of CD8(+) T cells specific for the L. monocytogenes LLO91-99 epitope in the effector and memory stages of the T-cell response. Challenge of these immune mice with recombinant L. monocytogenes resulted in rapid control of the infection and decreased CD8(+)-T-cell responses against both the secreted and nonsecreted form of the recombinant antigen compared to the response of na?ve mice. In contrast, mice immunized with a low dose of actA-deficient L. monocytogenes had approximately 10-fold fewer effector and memory T cells specific for LLO91-99 and a substantially higher CD8(+)-T-cell response against the recombinant antigen after challenge with recombinant L. monocytogenes. Although mice immunized with low-dose actA-deficient L. monocytogenes had a substantial recall response to LLO91-99, which reached the same levels by 5 to 7 days postchallenge as that in high-dose-immunized mice, they exhibited decreased ability to control L. monocytogenes replication. Thus, the level of antivector immunity impacts the control of infection and efficiency of priming responses against new antigens introduced with the same vector.  相似文献   

8.
A new pulmonary T-cell-like lymphocyte population with the phenotype CD3 CD4+ CD8+ was discovered in mice. CD4+ CD8+ but CD3+ cells among murine intestinal intraepithelial lymphocytes have previously been described. We describe herein a dramatic expansion of the CD3 CD4+ CD8+ cell population in response to experimental respiratory infection. After intranasal Chlamydia pneumoniae infection, CD4+ CD8+ cells became transiently the dominant lymphocyte type (maximum of 87% of all lymphocytes) in the lungs of NIH/S mice but remained virtually undetectable in spleen and blood. The enrichment of these cells was not a C. pneumoniae-specific event, since infection of NIH/S mice with influenza A virus also resulted in an increase in the number of CD4+ CD8+ cells (maximum of 42% of all lymphocytes). In addition to outbred NIH/S mice, two other mouse strains were studied: BALB/c (H-2d) and C57BL/6 (H-2b). C. pneumoniae-infected BALB/c mice responded with an intermediate increase in the number of CD4+ CD8+ cells in lungs, whereas C57BL/6 mice did not respond. The double-positive CD4+ CD8+ cells lacked a major part of the T-cell receptor complex, being both CD3 and TCR αβ. However, when they were stimulated in vitro with a T-cell mitogen, they responded by proliferation but did not secrete gamma interferon. The dramatic expansion of this cell population at the infection site suggests an active role for them in respiratory infection, but the specification of this requires further study.  相似文献   

9.
The T-cell receptor (TCR) Valpha/beta gene product expression upon in vitro stimulation with mycobacteria was investigated to assess whether T-cell proliferation was associated with any specific TCR V gene usage. T-cell-enriched populations from peripheral blood of Mycobacterium bovis BCG-vaccinated healthy blood donors were stimulated in vitro with live or killed M. tuberculosis or with a soluble extract thereof. TCR Valpha/beta repertoire analysis of reactive CD4(+) and CD8(+) T cells revealed a selective HLA-DR17(3), DQ2-restricted expansion of Valpha2.3(+) CD4(+) T cells upon stimulation with live M. tuberculosis or its soluble extract. Third-complementarity-determining-region (CDR3) length analysis of the expanded Valpha2.3(+) T cells indicated an oligoclonal pattern with short CDR3 lengths in six of seven HLA-DR17(3), DQ2(+) individuals tested. In addition, Valpha/Vbeta repertoire analysis of T lymphocytes from a DR17(3), DQ2(+) donor before and after BCG vaccination revealed that positivity of skin test reactivity was associated with expansion of Valpha2.3(+) CD4(+) T lymphocytes with preferential use of a short CDR3 peak length after in vitro stimulation. Separation of M. tuberculosis soluble extract by fast protein liquid chromatography (FPLC) purification indicated that fractions corresponding to molecular masses of 60 to 70 and 15 to 25 kDa were particularly effective in eliciting Valpha2.3(+) CD4(+) T-cell expansion.  相似文献   

10.
Antigen-specific CD8+ T cells with cytotoxic activity are often critical in immune responses to infectious pathogens. To determine whether gamma interferon (IFN-γ) expression is a surrogate marker for cytotoxic T lymphocytes (CTL), human cytomegalovirus-specific CTL responses were correlated with CD8+ T-cell IFN-γ expression determined by cytokine flow cytometry. A strong positive correlation was observed between specific lysis of peptide-pulsed targets in a 51Cr release assay and frequencies of peptide-activated CD8+ T cells expressing IFN-γ at 6 h (r2 = 0.72) or 7 days (r2 = 0.91). Enumeration of responding cells expressing perforin, another marker associated with CTL, did not improve this correlation. These results demonstrate that IFN-γ expression can be a functional surrogate for identification of CTL precursor cells.  相似文献   

11.
The expression of the natural killer (NK) cell marker CD56 has been reported to occur in NK cell lymphomas/leukemias and a small group of peripheral T-cell lymphomas but has not been studied extensively in primary intestinal non-B-cell lymphomas. Normal human jejunal intraepithelial lymphocytes (IELs) are mainly T-cell receptor (TCR)-αβ+CD3+CD8+CD5low and include an ~15% fraction of CD56+ cells that could be the cells of origin for CD56+ intestinal T-cell lymphoma (ITL). To test this hypothesis, 70 cases diagnosed as ITL were immunophenotyped, and 15 CD56+ cases (21%) were identified. The majority of the CD56+ lymphomas was of monomorphic small to medium-sized histology, shared the common phenotype βF1±CD3ε/cyt+CD8+CD4CD5CD57TIA-1+ and had clonally rearranged TCR γ-chain genes. In contrast, the CD56 lymphomas were mainly composed of pleomorphic medium and large cells or had a morphology most consistent with anaplastic large-cell lymphoma and were mostly CD8. These findings suggest that the majority of CD56+ intestinal lymphomas are morphologically and phenotypically distinct T-cell lymphomas most likely derived from activated cytotoxic CD56+CD8+ IELs. Some overlapping histological and clinical features between CD56+ and CD56 ITLs indicate that the former belong to the clinicopathological entity of ITL. The consistent expression of cytotoxic-granule-associated proteins introduces ITL (both CD56+ and CD56) into the growing family of usually aggressive extranodal lymphomas of cytotoxic T-cell and NK-cell derivation. In contrast to putative NK-cell lymphoma of the sinonasal region, intestinal NK-cell lymphoma seems to be very rare.  相似文献   

12.
Stimulation of Mycobacterium tuberculosis-primed lymph node cells from C57BL/6 mice with alpha antigen (also known as antigen 85B and MPT59) induced cell proliferation, production of interleukin 2 and gamma interferon, and expansion of Vbeta11(+) CD4(+) T cells in conjunction with antigen-presenting cells in an I-A(b)-restricted manner. Using a series of 15-amino-acid peptides that overlapped each other by 5 amino acids and spanned the mature alpha antigen, we identified the antigenic epitope for alpha antigen-specific Vbeta11(+) Th1 cells. That peptide (peptide-25), which corresponds to amino acid residues 240 to 254 of alpha antigen, contains a motif that is conserved in I-A(b) and requires processing by antigen-presenting cells. Using peptide-25-reactive Vbeta11(+) T-cell clones and substituted peptide-25 mutants, we determined which amino acid residues within peptide-25 were critical for T-cell receptor (TCR) recognition. Our results showed that the amino acid residues at positions 245, 246, 248, 250, and 251 are important for recognition of TCRVbeta11 and that residues at positions 244, 247, 249, and 252 are I-A(b) contact residues. We also observed that active immunization of C57BL/6 mice with peptide-25 can lead to decreased bacterial load in the lungs of M. tuberculosis H37Rv-infected mice. These results should provide us with a useful tool for delineating the regulation of Vbeta11(+) Th1-cell development during M. tuberculosis infection and for developing a vaccine inducing a Th1-dominant immune response.  相似文献   

13.
The protective effect of measles immunization is due to humoral and cell-mediated immune responses. Little is known about cell-mediated immunity (CMI) to measles vaccine virus, the relative contribution of CD4+ and CD8+ T cells to variability in such immune responses, and the immunologic longevity of the CMI after measles vaccination in humans. Our study characterizes cellular immune response in subjects seronegative or highly seropositive for measles vaccine immunoglobulin G-specific antibody, aged 15 to 25 years, previously immunized with two doses of measles-mumps-rubella II vaccine. We evaluated the ability of subjects to respond to measles vaccine virus by measuring measles virus-specific T-cell proliferation. We examined the frequencies of measles virus-specific memory Th1 and Th2 cells by an ELISPOT assay. Our results demonstrated that proliferation of T cells in seronegative subjects was significantly lower than that for highly seropositive subjects (P = 0.003). Gamma interferon (IFN-γ) secretion predominated over interleukin 4 (IL-4) secretion in response to measles virus in both groups. The median frequency of measles virus-reactive CD8+ T cells secreting IFN-γ was 0.09% in seronegative subjects and 0.43% in highly seropositive subjects (P = 0.04). The median frequency of CD4+ T cells secreting IL-4 in response to measles virus was 0.03% in seronegative subjects and 0.09% in highly seropositive subjects (P = 0.005). These data confirm the presence of measles virus-specific cellular immune responses post-measles vaccine immunization in humans. The detection of measles virus-induced IFN-γ and IL-4 production by ELISPOT can be used to identify measles virus-specific low-frequency memory T cells in subjects immunized with measles vaccine. These differences agree in directionality with the observed antibody response phenotype.  相似文献   

14.
15.
Regulatory T cells are found primarily in the CD4+ CD25+ fraction of T cells and play an important role in the prevention of autoimmunity. We examined CD4+ CD25+ T cells in 33 healthy children and adults and compared them to a population with an inherited form of thymic hypoplasia and a predisposition to autoimmune disease. Absolute numbers of CD4+ CD25+ T cells were markedly higher in healthy infants than in infants with chromosome 22q11.2 deletion syndrome.  相似文献   

16.
Mycobacterium tuberculosis readily activates both CD4+ and Vδ2+ γδ T cells. Despite similarity in function, these T-cell subsets differ in the antigens they recognize and the manners in which these antigens are presented by M. tuberculosis-infected monocytes. We investigated mechanisms of antigen processing of M. tuberculosis antigens to human CD4 and γδ T cells by monocytes. Initial uptake of M. tuberculosis bacilli and subsequent processing were required for efficient presentation not only to CD4 T cells but also to Vδ2+ γδ T cells. For γδ T cells, recognition of M. tuberculosis-infected monocytes was dependent on Vδ2+ T-cell-receptor expression. Recognition of M. tuberculosis antigens by CD4+ T cells was restricted by the class II major histocompatibility complex molecule HLA-DR. Processing of M. tuberculosis bacilli for Vδ2+ γδ T cells was inhibitable by Brefeldin A, whereas processing of soluble mycobacterial antigens for γδ T cells was not sensitive to Brefeldin A. Processing of M. tuberculosis bacilli for CD4+ T cells was unaffected by Brefeldin A. Lysosomotropic agents such as chloroquine and ammonium chloride did not affect the processing of M. tuberculosis bacilli for CD4+ and γδ T cells. In contrast, both inhibitors blocked processing of soluble mycobacterial antigens for CD4+ T cells. Chloroquine and ammonium chloride insensitivity of processing of M. tuberculosis bacilli was not dependent on the viability of the bacteria, since processing of both formaldehyde-fixed dead bacteria and mycobacterial antigens covalently coupled to latex beads was chloroquine insensitive. Thus, the manner in which mycobacterial antigens were taken up by monocytes (particulate versus soluble) influenced the antigen processing pathway for CD4+ and γδ T cells.

Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, is spread readily from person to person by inhalation of aerosolized mycobacteria (8). A hallmark of M. tuberculosis infection is the ability of most healthy individuals to control the infection by mounting an acquired immune response, in which antigen-specific T cells and mononuclear phagocytes arrest the growth of M. tuberculosis bacilli and maintain control over dormant bacilli within granulomas (reviewed in reference 25). This protective cellular immune response results in conversion of the tuberculin skin test from negative to positive and probably in increased resistance to reinfection with tubercle bacilli.CD4+ αβ-T-cell-receptor (αβ TCR)-bearing T cells (CD4+ T cells) are readily activated by mycobacterial antigens and have a dominant role in the protective immune response to M. tuberculosis in humans (2, 34). These CD4+ T cells not only secrete cytokines but also serve directly as cytotoxic effector cells against M. tuberculosis-infected macrophages (6). In addition to CD4+ T cells, M. tuberculosis antigens activate other human T-cell subsets such as γδ TCR+ T cells (γδ T cells) (15, 16, 18). Vδ2+ and Vγ9+ γδ T cells are particularly responsive to live M. tuberculosis (15). A role for both γδ and CD4+ T cells in protective immunity to acute M. tuberculosis infection has been demonstrated in murine models (20, 21, 26, 27). A recent study of humans suggests that Vγ9+ and Vδ2+ γδ T-cell numbers and function are reduced in tuberculosis patients (23).Functional comparisons of human CD4+ and γδ T-cell responses of healthy tuberculin-positive persons demonstrate that both T-cell subsets have similar cytotoxic effector functions for M. tuberculosis-infected monocytes and produce large amounts of gamma interferon (IFN-γ), with γδ T cells being slightly more efficient producers of IFN-γ than CD4+ T cells (37). Despite similarities in function, these two T-cell subsets differ in the mycobacterial antigens recognized by their TCRs and the manners in which antigens are presented to them by M. tuberculosis-infected mononuclear phagocytes. CD4+ T cells recognize a wide diversity of mycobacterial peptides in the context of class II major histocompatibility complex (MHC) molecules, which include secreted as well as somatic antigens (6, 13, 33, 37). In contrast, Vγ9+ and Vδ2+ γδ T cells, the dominant γδ TCR subsets activated by M. tuberculosis, recognize mycobacterial antigens in a non-MHC-restricted manner and the repertoire of antigens includes small phosphate-containing antigens such as TUBag’s (5, 9, 19, 22, 29, 36).Both blood monocytes and alveolar macrophages infected with M. tuberculosis are efficient antigen-presenting cells for mycobacterial antigen-specific CD4+ and γδ T cells (1, 5). However, little is known about how M. tuberculosis-infected mononuclear phagocytes process antigens for these two T-cell subsets. M. tuberculosis bacilli are taken up by mononuclear phagocytes through a variety of surface receptors, including complement receptor 4, mannose receptor, and complement receptor 3 (17, 31, 32). Within mononuclear phagocytes, the mycobacteria reside within phagosomes and modulate the phagosome by preventing fusion with acidic lysosomal compartments (7). Although the vacuolar membranes surrounding the phagosome acquire endosomal markers, the vesicular proton ATPase is actively excluded, resulting in an elevated pH of 6.3 to 6.5 compared to the normal lysosomal pH of 4.5 (7, 35). The elevated pH in the phagosome does not appear to inhibit the ability of mycobacterial antigens to be processed and presented to CD4+ and Vδ2+ γδ T cells. This study was undertaken to gain insight into the mechanisms used by monocytes infected with live M. tuberculosis bacilli to process mycobacterial antigens for presentation to both CD4+ and γδ T cells.  相似文献   

17.
Infections are frequent complications in end-stage renal failure patients undergoing hemodialysis (HD), and peripheral blood monocytes are important cells in host defense against infections. The majority of circulating monocytes express high levels of lipopolysaccharide receptor antigen CD14 and are negative for the immunoglobulin Fcγ receptor type III (CD16). We studied the occurrence of a minor subpopulation coexpressing low levels of CD14 together with CD16 in HD patients. In healthy controls CD14+ CD16+ monocytes account for 8% ± 4% of CD14+ monocytes, with an absolute number of 29 ± 14 cells/μl. In stable HD patients the CD14+ CD16+ subpopulation was significantly elevated (14% ± 3%, or 66 ± 28 cells/μl), while the number of CD14++ monocytes (monocytes strongly positive for CD14) remained constant. In HD patients suffering from chronic infections a further rise in CD14+ CD16+ monocytes was observed (128 ± 71 cells/μl; P < 0.01) such that this subpopulation constituted 24% of all blood monocytes. In contrast, numbers of CD14++ cells did not change compared to those for stable HD patients, indicating that the CD14+ CD16+ monocyte subpopulation was selectively expanded. During acute infections the CD14+ CD16+ cell subpopulation always expanded. A whole-blood assay revealed that CD14+ CD16+ monocytes exhibited a higher phagocytosis rate for Escherichia coli bacteria than CD14++ monocytes, underlining their role during host defense. In addition, CD14+ CD16+ monocytes expressed higher levels of major histocompatibility complex (MHC) class II antigens (HLA-DR, -DP, and -DQ) and equal amounts of MHC class I antigens (HLA-ABC). Thus, CD14+ CD16+ cells constitute a potent phagocytosing and antigen-presenting monocyte subpopulation, which is expanded during acute and chronic infections commonly observed in chronic HD patients.

Peripheral blood monocytes are members of the mononuclear phagocytic system, which plays a central role in immunoregulation and host defense against immunopathogenic organisms (7). Monocytes are activated through molecular signals provided by structures of the infective organisms (8, 27, 28, 34, 35) or inflammatory mediators and chemotactic factors released by other cells during the infective challenge (22, 44, 47). However, blood monocytes represent a heterogeneous cell population and can be distinguished by variations in morphology (38, 58), membrane antigen expression (39), and release of inflammatory mediators (12, 25, 41).While the lipopolysaccharide (LPS) receptor antigen CD14 is expressed by nearly all circulating peripheral blood monocytes, monocytes differ markedly in cell surface CD14 density as well as in the expression of immunoglobulin Fcγ receptors (53, 67). The majority of monocytes strongly positive for CD14 (CD14++) express Fcγ receptor I (CD64) and Fcγ receptor II (CD32) and are negative for Fcγ receptor III (CD16) (18). Only a small population was identified by the absence of Fcγ receptors (63). Nevertheless, a subset of monocytes characterized by low-level expression of CD14 and expression of the CD16 antigen has also been described (40). In healthy subjects these CD14+ CD16+ cells account for about 10% of all monocytes and are thought to be more mature cells than the regular CD14++ monocytes, as they exhibit features of tissue macrophages (66). In various infectious or inflammatory diseases such as AIDS and asthma the CD14+ CD16+ monocyte subpopulation is markedly expanded (36, 43, 50). A more than 10-fold increase of these cells during septicemia was demonstrated, and CD14+ CD16+ cells become the predominant type of monocytes in some septic patients (14).Patients with end-stage renal failure undergoing chronic hemodialysis (HD) show an impaired immune response (10) with a high prevalence of infectious complications (17). Most of these infections are of bacterial origin, representing a major cause of morbidity and mortality in chronic HD patients (24). Furthermore, acute or chronic inflammatory processes, among them pneumonia and vascular access site infections, are common hazards in uremic patients undergoing chronic regular HD. Despite some data on the functional abnormalities of polymorphonuclear leukocytes in uremia (19), little information exists on the level of monocytes and their subsets in maintenance dialysis patients.In an effort to further understand the importance of the distinct monocyte population expressing Fcγ receptor type III, we determined the levels of these cells in patients with end-stage renal failure undergoing chronic HD. This allowed the level of CD14+ CD16+ cells to be compared to that of CD14++ cells and the total monocyte count in whole blood. To investigate the proinflammatory role of CD14+ CD16+ monocytes, stable patients as well as patients with acute or chronic signs of infections or inflammatory processes were studied. Furthermore, we analyzed cell surface HLA expression of CD14+ CD16+ monocytes by immunophenotyping and compared their phagocytic competence with that of regular CD14++ blood monocytes.  相似文献   

18.
Visceral leishmaniasis is a severe and lethal disease caused by the protozoan parasites of the genus Leishmania. In areas where leishmaniasis is endemic, most infected individuals control the infection and remain asymptomatic; chemotherapy of visceral leishmaniasis restores some immunity which protects against relapses. In the present study, Leishmania-specific T-cell clones were established from six asymptomatic and five cured patients. Cytokines production by these clones was analyzed. A large fraction of the parasite-specific T-cell clones from asymptomatic patients were CD8(+) and produced high amounts of gamma interferon (IFN-gamma). Most CD4(+) T-cell clones from two asymptomatic subjects exhibited an unusual phenotype: production of high levels of IFN-gamma low levels of interleukin-4, (IL-4), but high levels of IL-5. In contrast, only few parasite-specific CD8(+) T-cell clones were obtained from cured patients after chemotherapy; moreover, CD4(+) T-cell clones from these patients exhibited an heterogeneous profile of cytokines from Th1-like to Th2-like phenotypes. These results point to CD8(+) T cells and to IL-5- and IFN-gamma-producing CD4(+) T cells as possible contributors to human resistance to Leishmania infection. They should stimulate new immunological approaches in the control of this disease.  相似文献   

19.
Regulated antigen expression can influence the immunogenicity of live recombinant Salmonella vaccines, but a rational optimization has remained difficult since important aspects of this effect are incompletely understood. Here, attenuated Salmonella enterica serovar Typhimurium SL3261 strains expressing the model antigen GFP_OVA were used to quantify in vivo antigen levels by flow cytometry and to simultaneously follow the crucial early steps of antigen-specific T-cell responses in mice that are transgenic for a T-cell receptor recognizing ovalbumin. Among seven tested promoters, P(pagC) has the highest activity in murine tissues combined with low in vitro expression, whereas P(tac) has a comparable in vivo and a very high in vitro activity. Both SL3261 (pP(pagC)GFP_OVA) and SL3261 (pP(tac)GFP_OVA) cells can induce potent ovalbumin-specific cellular immune responses following oral administration, but doses almost 1,000-fold lower are sufficient for the in vivo-inducible construct SL3261 (pP(pagC)GFP_OVA) compared to SL3261 (pP(tac)GFP_OVA). This efficacy difference is largely explained by impaired early colonization capabilities of SL3261 (pP(tac)GFP_OVA) cells. Based on the findings of this study, appropriate in vivo expression levels for any given antigen can be rationally selected from the increasing set of promoters with defined properties. This will allow the improvement of recombinant Salmonella vaccines against a wide range of pathogens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号