首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
在低压无磨料条件下,利用碱性FA/O型螯合剂具有极强螯合能力的特性,对铜互连线进行化学机械平坦化,获得了高抛光速率和表面一致性。提出了铜表面低压无磨料抛光技术的平坦化原理,在分析了抛光液化学组分与铜化学反应机理的基础上,对抛光液中的主要成分FA/O型螯合剂、氧化剂的配比和抛光工艺参数压力、抛光机转速进行了研究。结果表明:在压力为6.34kPa和抛光机转速为60r/min时,抛光液中添加5%螯合剂与1%氧化剂(体积分数,下同),抛光速率为1825nm/min,表面非均匀性为0.15。  相似文献   

2.
目的探索适合于TSV技术的最佳CMP工艺。方法在碱性条件下,利用碱性FA/O型鳌合剂极强的鳌合能力,对铜膜进行化学机械抛光,通过调节抛光工艺参数及抛光液配比,获得超高的抛光速率和较低的表面粗糙度。结果在压力27.56 kPa,流量175 mL/min,上下盘转速105/105 r/min,pH=11.0,温度40℃,氧化剂、磨料、螯合剂体积分数分别为1%,50%,10%的条件下,经过CMP平坦化,铜膜的去除速率达2067.245 nm/min,且表面粗糙度得到明显改善。结论该工艺能获得高抛光速率。  相似文献   

3.
目的提高Co在超大规模集成电路全局化学机械抛光过程中的去除速率及Co/Ti去除选择比,并对去除机理进行详细描述。方法研究不同浓度的磨料、多羟多胺络合剂(FA/OII)、氧化剂等化学成分及不同pH值对钴去除率的影响。利用电化学实验、表面化学元素分析(XPS)揭示钴实现高去除速率的机理,通过原子力显微镜(AFM)对钴抛光前后的表面形貌进行了观察,并采用正交实验法找到抛光液最佳组分配比。结果随磨料浓度的升高,钴去除速率增大。随pH值的升高,钴去除速率降低。随氧化剂浓度的提升,钴去除速率升高,但Co/Ti去除选择比先升后降。随螯合剂浓度的增大,钴去除速率及Co/Ti去除选择比均先升后降。正交试验找到了最佳的抛光液配比及条件(3%磨料+20 mL/L多胺螯合剂(FA/OⅡ)+5 mL/L氧化剂(H_2O_2),pH=8),实现了钴的高去除(~500 nm/min)及较好的Co/Ti去除选择比(100:1)。并且,表面的平坦化效果明显提高,原子力显微镜测试结果显示Co面粗糙度由原本的3.14 nm降低到0.637 nm。结论采用弱碱性抛光液能有效提升钴的去除速率,并保证腐蚀可控。抛光液中同时含有氧化剂和螯合剂时,通过强络合作用实现了钴的抛光速率和Co/Ti去除选择比的大幅度提升。  相似文献   

4.
化学机械抛光过程抛光液作用的研究进展   总被引:1,自引:0,他引:1  
化学机械抛光(CMP)已成为公认的纳米级全局平坦化精密超精密加工技术。抛光液在CMP过程中发挥着重要作用。介绍了CMP过程中抛光液的作用的研究进展,综合归纳了抛光液中各组分的作用,为抛光液的研制和优化原则的制定提供了参考依据。  相似文献   

5.
以纳米氧化铝为磨料对A向蓝宝石进行化学机械抛光,实验中考察了磨料浓度、磨料粒径、抛光时间、抛光压力以及NH4F浓度等因素对A向蓝宝石的材料去除速率和表面粗糙度的影响。利用原子力显微镜(AFM)检测抛光后A向蓝宝石的表面粗糙度,系统分析抛光过程中各影响因素,优化实验条件,结果表明:当抛光液中磨料质量分数为1%、磨料粒度尺寸为50nm、抛光时间为40 min、抛光压力为16.39 kPa、NH4F质量分数为0.6%、pH=4.0时,抛光后材料去除速率(MRR)为18.2 nm/min,表面粗糙度值Ra 22.3 nm,抛光效果最好。   相似文献   

6.
针对芬顿反应CMP抛光GaN晶片的抛光液,开展以表面质量为评价指标的参数优化试验,找出抛光液组分的最优配比。结果表明:当H2O2质量分数为7.5%时,GaN晶片加工表面效果最优,表面粗糙度达到3.2 nm;催化剂能有效调节芬顿反应的速率,对比液体催化剂FeSO4溶液和固体催化剂Fe3O4粉末,固体催化剂Fe3O4粉末能在溶液中持续电离Fe2+,使芬顿反应能在整个加工过程中持续作用。当Fe3O4粉末粒径为20 nm时,抛光效果最佳,表面粗糙度达到3.0 nm;对比氧化铝、氧化铈、硅溶胶磨料,硅溶胶磨料抛光的表面效果最佳,晶片表面粗糙度达到3.3 nm;当硅溶胶磨料质量分数为20.0%,磨料粒径为60 nm时,抛光后晶片表面粗糙度达到1.5 nm。抛光液组分优化后,采用最优的抛光液组分参数抛光GaN晶片,其能获得表面粗糙度为0.9 nm的光滑表面。   相似文献   

7.
无磨料复合清洗剂对铜膜表面腐蚀缺陷的控制   总被引:2,自引:1,他引:1  
目的研究一种复合清洗剂对铜膜表面腐蚀缺陷的控制效果。方法通过单因素实验优化无磨料复合清洗剂组成和相应的清洗工艺,并通过研究优化的清洗条件对不同类型铜晶圆表面划伤、残留颗粒的清洗效果,验证该清洗剂的清洗性能。结果优化的清洗剂组分和清洗工艺为:金属离子螯合剂体积分数0.025%,表面活性剂体积分数0.1%;清洗剂温度30℃,清洗剂流量3 L/min。优化的复合清洗剂能大幅度降低铜膜表面划伤和表面粗糙度,对铜膜表面残留的颗粒有较强的去除作用。结论优化的复合清洗剂能够对不同类型铜晶圆表面缺陷进行大幅度的修正,研究成果对提高大规模生产中晶圆的成品率有一定的指导作用。  相似文献   

8.
利用固相反应法制备纳米二氧化锡磨料并研究了制备条件对平均粒径的影响。结果表明,在500℃/4h条件下制得的纳米二氧化锡粉体在水中有良好的分散性和稳定性。利用自制的抛光液对高纯钌片进行化学机械抛光,与二氧化硅磨料抛光液比较,材料去除速率和表面粗糙度都降低。当抛光液中含1%(质量分数,下同)二氧化锡、1%过硫酸铵、1%酒石酸和3mmol/L咪唑,pH=8.0,抛光压力为17.24kPa时,材料去除速率(MRR)和表面粗糙度(Ra)分别为6.8nm/min和4.8nm。  相似文献   

9.
目的 高效快速获得紫外光辅助作用下碳化硅(SiC)化学机械抛光(Chemical mechanical polishing, CMP)的最佳加工参数。方法 根据化学作用与机械作用相平衡时达到最佳抛光条件的理论,通过电化学测试的方法探究抛光液pH值、过氧化氢(Hydrogen peroxide, H2O2)浓度、Fe2+浓度、紫外光功率等对基体表面氧化膜形成速率(化学作用)的影响;在最大氧化膜形成速率条件下,以材料去除率(Material removal rate, MRR)和表面粗糙度(Average roughness, Ra)为指标,通过调节抛光压力、抛光盘转速、抛光液流量等工艺参数,探究工艺参数对碳化硅加工过程中氧化膜去除速率(机械作用)的作用规律,寻求机械作用与化学作用的平衡点,获取紫外光辅助作用下SiC CMP的最佳工艺参数。结果 在pH值为3、H2O2的质量分数为4%、Fe2+浓度为0.4 mmol/L、紫外光功率为32 W时,化学作用达到最大值。在最大化学作用条件下,抛光压力、抛光盘转速、抛光液流量分别为38.68 kPa、120 r/min、90 mL/min时,化学作用与机械作用最接近于平衡点,此时材料去除率为92 nm/h,表面粗糙度的最低值为0.158 nm。结论 根据研究结果,电化学测试可以作为探究晶片表面氧化速率较高时所需加工参数的有效手段,进一步调节工艺参数,使化学作用速率与机械去除速率相匹配,高效地获得了材料去除率和表面质量较高的晶片。  相似文献   

10.
目的 采用对环境友好的抛光工艺来改善304不锈钢表面抛光质量。方法 基于化学机械抛光(CMP)工艺,采用主要成分为氧化铝(Al2O3)磨料、L-苹果酸、过氧化氢(H2O2)、乳化剂OP-10、甘氨酸的绿色环保抛光液,设计并试验了pH值,H2O2、乳化剂OP-10、甘氨酸质量分数的4因素4水平CMP正交试验。采用极差法分析了4个因素对表面粗糙度和材料去除率的影响。采用电化学工作站,通过动电位极化曲线法,分析304不锈钢在不同抛光液环境下的静态腐蚀特性。通过X射线光电子能谱(XPS),分析304不锈钢在不同抛光液环境下的表面元素和化学组分变化。结果 开发了一种不含任何强酸、强碱等危化物品的新型环保化学机械抛光液。通过绿色CMP加工,在70μm×50μm范围内将304不锈钢平均表面粗糙度从CMP前的7.972 nm降至0.543 nm。与之前报道的304不锈钢抛光相比,绿色CMP抛光后的表面粗糙度最低。通过正交试验,得到了绿色CMP加工的最优抛光液参数:pH=3...  相似文献   

11.
The mechanical effect of colloidal silica concentration in copper chemical mechanical planarization (CMP) is considered in this paper by using friction force monitoring system. The copper peak was detected in the result of the energy-dispersive X-ray (EDX) spectra of the polishing residues. The addition of colloidal silica into copper CMP slurry increased both the material removal rate and the friction force. During CMP, as the concentration of the colloidal silica was increased, the temperature generated by the friction force also increased. To understand effect of abrasive concentration on the material removal and friction force, we considered the material removal and the friction energy for a single abrasive. The surface of the polished copper film was measured by X-ray photoelectron spectroscopy (XPS). All the material removal rates as a function of friction energy after polishing with various concentrations of colloidal silica had a non-linear characteristic.  相似文献   

12.
Micropatterned thin films when planarized using chemical mechanical polishing (CMP) accompany several inherent problems, especially dishing defects. The deteriorations in surface planarity limit the accuracy and flexibility of next fabrication steps, thus accounting for a major portion of yield losses in the mass production of microelectronic components. A hybrid polysilicon (poly-Si) planarization using a protective dioxide (SiO2) film and two slurries having diametrically opposite poly-Si-to-SiO2 selectivity is developed to suppress dishing defects in the CMP of patterned poly-Si films. A 30 nm-thick protective SiO2 film is deposited on a patterned poly-Si film to protect recessed areas on the uneven poly-Si film; the SiO2-protected poly-Si film is planarized with the first slurry having low material selectivity to selectively remove the protective SiO2 film placed on protruding areas while effectively remaining it located on recessed areas; the primarily planarized poly-Si film is polished again with the second slurry having high material selectivity to minimize the amount of dishing defects. For diverse poly-Si layers having different pattern widths of 5–90 μm, the dishing amount is measured less than 23.1 nm after the hybrid poly-Si planarization, and noticeably the dishing amount is insensitive to the pattern width. This shows that our hybrid poly-Si planarization can improve the planarity of each poly-Si film in the fabrication of multi-level (or three-dimensional (3D)) microdevices. The dependence of the material removal rate of poly-Si films on critical slurry parameters such as slurry pH and abrasive concentration is also intensively discussed.  相似文献   

13.
Recently, many researchers have studied the material removal mechanism of copper chemical mechanical planarization (CMP). On the basis of their previous works, we studied the mechanical effect of copper (Cu) CMP on the material removal rate profile. Copper CMP was performed using citric acid (C6H8O7), hydrogen peroxide (H2O2), colloidal silica, and benzotriazole (BTA, C6H4N3H) as a complexing agent, an oxidizer, an abrasive, and a corrosion inhibitor, respectively. In this paper, the abrasives and process condition are main mechanical factors of CMP. The colloidal silica, used as an abrasive in copper CMP slurry containing 0.01 M citric acid and 3 vol% hydrogen peroxide, controlled the wafer edge profile by abrading the wafer edge. The polishing pressure did not contribute to the material removal rate (MRR) profile, but did to the MRR. As the rotational velocity of the polishing head and table increased, the deviation of MRR profile became smaller. The results of this paper showed that the abrasive concentration was the key factor which controlled the wafer edge profile, and also the rotational velocity was the key factor which controlled wafer center profile of MRR.  相似文献   

14.
根据液固化学反应特性和欧几里得有效面积公式,建立了适用于粗糙晶圆表面的化学反应动力学方程,得到了不同晶圆表面的化学反应速率常数和化学机械平坦化(CMP)前后晶圆质量差。根据晶圆表面不同位置的lg(RMS height)lgx拟合直线斜率和截距的平均值,得到了每个晶圆表面的分形维数与尺度系数,进一步得到了铜膜化学反应分级数。通过分析晶圆表面分形维数对化学反应动力学参数的影响,可以得出: 当表面分形维数为2.917时,铜膜的化学反应分级数为1,此时铜膜的络合反应过程中的所有瞬时反应数量达到最小值。最后的验证试验表明: 晶圆表面分形维数越大,CMP后尖峰消除量越大,即铜膜表面化学反应速率越快;晶圆表面分形维数越小,CMP后粗糙度下降越明显,即铜膜表面化学反应均匀性越好。  相似文献   

15.
目的 化学机械抛光(CMP)包含化学腐蚀和机械磨削两方面,抛光液pH、磨粒粒径和浓度等因素均会不同程度地影响其化学腐蚀和机械磨削能力,从而影响抛光效果。方法 采用30~150 nm连续粒径磨粒抛光液、120 nm均一粒径磨粒抛光液、50 nm和120 nm配制而成的混合粒径磨粒抛光液,分别对蓝宝石衬底晶圆进行循环CMP实验,研究CMP过程中抛光液体系的变化。结果 连续粒径磨粒抛光液中磨粒大规模团聚,满足高材料去除率的抛光时间仅有4 h,抛光后的晶圆表面粗糙度为0.665 nm;均一粒径磨粒抛光液中磨粒稳定,无团聚现象,抛光9 h内材料去除率较连续粒径磨粒抛光液高94.7%,能至少维持高材料去除率18 h,抛光后的晶圆表面粗糙度为0.204 nm;混合粒径磨粒抛光液初始状态下磨粒稳定性较高,抛光9 h内材料去除率较连续粒径磨粒抛光液高114.8%,之后磨粒出现小规模团聚现象,后9 h材料去除率仅为均一粒径磨粒抛光液的59.6%,18 h内材料去除率仅为均一粒径磨粒抛光液的87.7%,但抛光后的晶圆表面粗糙度为0.151 nm。结论 一定时间内追求较高的材料去除率和较好的晶圆表面粗糙度选用混合粒径磨粒抛光液,但需要长时间CMP使用均一粒径磨粒抛光液更适合,因此,在工业生产中需要根据生产要求配合使用混合粒径磨粒抛光液和均一粒径磨粒抛光液。  相似文献   

16.
1 INTRODUCTIONThankstoitslowresistivityandhighelectromi grationresistance ,copperappearstobeaverypromisingsubstituteforaluminumininterconnec tions[1] .However ,copperisverydifficulttopattern ,andonlychemical mechanicalpolishing (CMP)tech nologycanresolvethisproblem[2 ] .CMPwasinitiallyinvestigatedandopenedoutfrom 1980soverseas[3] ,anditisthebestandonlyglobalplanarizationtech nologyatpresent ,butkeepsholdofbusinesssecretsallthetime .Fayolleetal[2 ] researchedCMPprocessofcopperwhereFe(…  相似文献   

17.
化学机械抛光中抛光垫的研究   总被引:7,自引:1,他引:7  
抛光垫是化学机械抛光(CMP)系统的重要组成部分。它具有贮存抛光液,并把它均匀运送到工件的整个加工区域等作用。抛光垫的性能主要由抛光垫的材料种类、材料性能、表面结构与状态以及修整参数等决定。本文介绍CMP过程常用的抛光垫材料种类、材料性能、表面结构,总结了抛光垫的性能对CMP过程影响规律,认为:抛光垫的剪切模量或增大抛光垫的可压缩性,CMP过程材料去除率增大;采用表面合理开槽的抛光垫,可提高材料去除率,降低晶片表面的不均匀性;抛光垫粗糙的表面有利于提高材料去除率。对抛光垫进行适当的修整可以增加抛光垫表面粗糙度、使材料去除率趋于一致。与离线修整相比较,在线修整时修整效果比较好。  相似文献   

18.
柔性显示已成为下一代显示技术的研究热点,不锈钢材料是柔性大尺寸显示器衬底的主要材料之一。为优化不锈钢表面的超光滑无损伤加工,采用化学机械抛光(CMP)技术,通过正交试验,研究磨料粒度尺寸、分散剂、氧化剂、磨料质量、缓蚀剂用量等因素对抛光后材料去除率和表面粗糙度的影响。试验结果表明:磨料粒度尺寸对表面粗糙度的影响最大,其次为双氧水、丙三醇、草酸、磨料质量;影响材料去除率的因素排列是磨料粒度尺寸、磨料含量、丙三醇含量、草酸含量、双氧水含量。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号