首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIM: To characterize enzymatic activity of severe acute respiratory syndrome (SARS) coronavirus (CoV) 3C-like protease (3CL(pro)) and its four site-directed mutants. METHODS: Based on the fluorescence resonance energy transfer (FRET) principle using 5-[(2'-aminoethyl)-amino] naphthelenesulfonic acid (EDANS) and 4-[[4-(dimethylamino) phenyl] azo] benzoic acid (Dabcyl) as the energy transfer pair, one fluorogenic substrate was designed for the evaluation of SARS-CoV 3CL(pro) proteolytic activity. RESULTS: The kinetic parameters of the fluorogenic substrate have been determined as Km=404 micromol.L(-1), kcat=1.08 min(-1), and kcat/Km=2.7 mmol(-1).L.min(-1). SARS-CoV 3CL(pro) showed substantial pH and temperature-triggered activity switches, and site-directed mutagenesis analysis of SARS-CoV 3CL(pro) revealed that substitutions of His41, Cys145, and His163 resulted in complete loss of enzymatic activity, while replacement of Met162 with Ala caused strongly increased activity. CONCLUSION: This present work has provided valuable information for understanding the catalytic mechanism of SARS-CoV 3CL(pro). This FRET-based assay might supply an ideal approach for the exploration SARS-CoV 3CL(pro) putative inhibitors.  相似文献   

2.
The 3C-like protease (3CLpro) of SARS-coronavirus mediates the proteolytic processing of replicase polypeptides 1a and 1ab into functional proteins, becoming an important target for the drug development. In this study, Isatis indigotica root extract, five major compounds of I. indigotica root, and seven plant-derived phenolic compounds were tested for anti-SARS-CoV 3CLpro effects using cell-free and cell-based cleavage assays. Cleavage assays with the 3CLpro demonstrated that IC50 values were in micromolar ranges for I. indigotica root extract, indigo, sinigrin, aloe emodin and hesperetin. Sinigrin (IC50: 217 microM) was more efficient in blocking the cleavage processing of the 3CLpro than indigo (IC50: 752 microM) and beta-sitosterol (IC50: 1210 microM) in the cell-based assay. Only two phenolic compounds aloe emodin and hesperetin dose-dependently inhibited cleavage activity of the 3CLpro, in which the IC50 was 366 microM for aloe emodin and 8.3 microM for hesperetin in the cell-based assay.  相似文献   

3.
A series of eight peptides corresponding to the amino acid sequence of the hinge region of IgG and 17 newly synthesized peptide analogues containing a piperidine moiety as a replacement of a glycine residue were tested as potential inhibitors of the bacterial IgG degrading enzyme of Streptococcus pyogenes , IdeS. None of the peptides showed any inhibitory activity of IdeS, but several piperidine-based analogues were identified as inhibitors. Two different analysis methods were used: an SDS-PAGE based assay to detect IgG cleavage products and a surface plasmon resonance spectroscopy based assay to quantify the degree of inhibition. To investigate the selectivity of the inhibitors for IdeS, all compounds were screened against two other related cysteine proteases (SpeB and papain). The selectivity results show that larger analogues that are active inhibitors of IdeS are even more potent as inhibitors of papain, whereas smaller analogues that are active inhibitors of IdeS inhibit neither SpeB nor papain. Two compounds were identified that exhibit high selectivity against IdeS and will be used for further studies.  相似文献   

4.
The first nonpeptidic, noncovalent inhibitors of the cysteine protease cathepsin S (CatS) are described. Electronic database searching using the program DOCK generated a screening set of potential CatS inhibitors from which two lead structures were identified as promising starting points for a drug discovery effort. Lead optimization afforded potent (IC(50) < 50 nM) and selective inhibitors of CatS demonstrating cellular activity and reversibility of enzyme inhibition.  相似文献   

5.
新型冠状病毒肺炎(corona virus disease 2019,COVID-19)疫情发生以来,建议的治疗方案在持续更新中。目前没有特效药物,很多药物仅仅是推荐试用,也有一些新药在开展临床研究,如瑞德西韦。相对于新药,开发已上市药物新的适应证在安全性方面更有优势,如人类免疫缺陷病毒(human immunodeficiency virus,HIV)蛋白酶抑制剂(protease inhibitors,PIs)。此类药物目前为HIV感染治疗的二线用药,但曾被推荐试用于严重急性呼吸综合征(severe acute respiratory syndrome,SARS)、中东呼吸综合征(Middle East respiratory syndrome,MERS)以及COVID-19。本文拟对HIV PIs在冠状病毒(coronavirus,CoV)感染中应用的研究情况进行综述,以期为HIV PIs用于COVID-19治疗的可行性研究提供参考。  相似文献   

6.
The design and evaluation of low molecular weight peptide-based severe acute respiratory syndrome (SARS) chymotrypsin-like protease (3CL) protease inhibitors are described. A substrate-based peptide aldehyde was selected as a starting compound, and optimum side-chain structures were determined, based on a comparison of inhibitory activities with Michael type inhibitors. For the efficient screening of peptide aldehydes containing a specific C-terminal residue, a new approach employing thioacetal to aldehyde conversion mediated by N-bromosuccinimide was devised. Structural optimization was carried out based on X-ray crystallographic analyses of the R188I SARS 3CL protease in a complex with each inhibitor to provide a tetrapeptide aldehyde with an IC(50) value of 98 nM. The resulting compound carried no substrate sequence, except for a P(3) site directed toward the outside of the protease. X-ray crystallography provided insights into the protein-ligand interactions.  相似文献   

7.
目的寻找作为感冒229E抗原型冠状病毒3CL蛋白酶抑制剂的新化学结构。方法运用分子对接方法在ACD化合物库中发现天然产物金丝桃苷是潜在的新型抑制剂,借助分子模拟的方法进行结构改造,设计并合成了5个金丝桃苷衍生物,采用表面等离子共振(SPR)法测试这些化合物与该蛋白酶的结合能力。结果与结论衍生物Ⅱ、Ⅲ、Ⅳ与蛋白酶的结合能力比原天然产物Ⅰ提高了3倍以上,它们的结合构象也明显不同于Ⅰ与SARS病毒3CL蛋白酶的结合构象。这些结合模式的差异为设计选择性更好的感冒病毒3CL蛋白酶抑制剂提供了有益的参考信息。将计算机辅助药物分子设计、有机合成和生物活性测试有机地结合起来,是发现和设计感冒229E型病毒3CL蛋白酶新型选择性抑制剂的有效途径。  相似文献   

8.
Coronaviruses comprise a large group of RNA viruses with diverse host specificity. The emergence of highly pathogenic strains like the SARS coronavirus (SARS-CoV), and the discovery of two new coronaviruses, NL-63 and HKU1, corroborates the high rate of mutation and recombination that have enabled them to cross species barriers and infect novel hosts. For that reason, the development of broad-spectrum antivirals that are effective against several members of this family is highly desirable. This goal can be accomplished by designing inhibitors against a target, such as the main protease 3CL(pro) (M(pro)), which is highly conserved among all coronaviruses. Here 3CL(pro) derived from the SARS-CoV was used as the primary target to identify a new class of inhibitors containing a halomethyl ketone warhead. The compounds are highly potent against SARS 3CL(pro) with K(i)'s as low as 300 nM. The crystal structure of the complex of one of the compounds with 3CL(pro) indicates that this inhibitor forms a thioether linkage between the halomethyl carbon of the warhead and the catalytic Cys 145. Furthermore, Structure Activity Relationship (SAR) studies of these compounds have led to the identification of a pharmacophore that accurately defines the essential molecular features required for the high affinity.  相似文献   

9.
Lai L  Han X  Chen H  Wei P  Huang C  Liu S  Fan K  Zhou L  Liu Z  Pei J  Liu Y 《Current pharmaceutical design》2006,12(35):4555-4564
The SARS coronavirus 3C-like proteinase is recognized as a potential drug design target for the treatment of severe acute respiratory syndrome. In the past few years, much work has been done to understand the catalytic mechanism of this target protein and to design its selective inhibitors. The protein exists as a dimer/monomer mixture in solution and the dimer was confirmed to be the active species for the enzyme reaction. Quantitative dissociation constants have been reported for the dimer by using analytic ultracentrifuge, gel filtration and enzyme assays. Though the enzyme is a cysteine protease with a chymotrypsin fold, SARS 3C-like proteinase follows the general base catalytic mechanism similar to chymotrypsin. As the enzyme can cut eleven different sites on the viral polyprotein, the substrate specificity has been studied by synthesized peptides corresponding or similar to the cleavage sites on the polyprotein. Predictive model was built for substrate structure and activity relationships and can be applied in inhibitor design. Due to the lack of potential drugs for the treatment of SARS, the discovery of inhibitors against SARS 3C-like proteinase, which can potentially be optimized as drugs appears to be highly desirable. Various groups have been working on inhibitor discovery by virtual screening, compound library screening, modification of existing compounds or natural products. High-throughput in vitro assays, auto-cleavage assays and viral replication assays have been developed for inhibition activity tests. Inhibitors with IC50 values as low as 60 nM have been reported.  相似文献   

10.
The discovery of novel, reversible and competitive tripeptide inhibitors of the Hepatitis C virus NS3/4A serine protease is described. These inhibitors are characterized by the presence of a C-terminal phenethyl amide group, which extends into the prime side of the enzyme. Initial SAR together with molecular modeling and data from site-directed mutagenesis suggest an interaction of the phenethyl amide group with Lys-136.  相似文献   

11.
A potent SARS coronavirus (CoV) 3CL protease inhibitor (TG-0205221, Ki = 53 nM) has been developed. TG-0205221 showed remarkable activity against SARS CoV and human coronavirus (HCoV) 229E replications by reducing the viral titer by 4.7 log (at 5 microM) for SARS CoV and 5.2 log (at 1.25 microM) for HCoV 229E. The crystal structure of TG-0205221 (resolution = 1.93 A) has revealed a unique binding mode comprising a covalent bond, hydrogen bonds, and numerous hydrophobic interactions. Structural comparisons between TG-0205221 and a natural peptide substrate were also discussed. This information may be applied toward the design of other 3CL protease inhibitors.  相似文献   

12.
A structure-based in silico virtual drug discovery procedure was assessed with severe acute respiratory syndrome coronavirus main protease serving as a case study. First, potential compounds were extracted from protein-ligand complexes selected from Protein Data Bank database based on structural similarity to the target protein. Later, the set of compounds was ranked by docking scores using a Electronic High-Throughput Screening flexible docking procedure to select the most promising molecules. The set of best performing compounds was then used for similarity search over the 1 million entries in the Ligand.Info Meta-Database. Selected molecules having close structural relationship to a 2-methyl-2,4-pentanediol may provide candidate lead compounds toward the development of novel allosteric severe acute respiratory syndrome protease inhibitors.  相似文献   

13.
Introduction: Highly Active Antiretroviral Therapy (HAART) has tremendously improved the life expectancy of the HIV-infected population over the past three decades. Protease inhibitors have been one of the major classes of drugs in HAART regimens that are effective in treating HIV. However, the emergence of resistance and cross-resistance against protease inhibitors encourages researchers to develop new PIs with broad-spectrum activity, as well as novel means of enhancing the efficacy of existing PIs.

Areas covered: In this article we discuss recent advances in HIV protease inhibitor (PI) development, focusing on both investigational and experimental agents. We also include a section on pharmacokinetic booster drugs for improved bioavailability of protease inhibitors. Further, we discuss novel drug delivery systems using a variety of nanocarriers for the delivery of PIs across the blood-brain barrier to treat the HIV in the brain.

Expert opinion: We discuss our opinion on the promises and challenges on the development of novel investigational and experimental PIs that are less toxic and more effective in combating drug-resistance. Further, we discuss the future of novel nanocarriers that have been developed to deliver PIs to the brain cells. Although these are promising findings, many challenges need to be overcome prior to making them a viable option.  相似文献   

14.
Cysteine proteases selectively catalyze the hydrolysis of peptide bonds. Uncontrolled, unregulated, or undesired proteolysis can lead to many disease states including emphysema, stroke, viral infections, cancer, Alzheimer's disease, inflammation, and arthritis. Cysteine proteases inhibitors thus have considerable potential utility for therapeutic intervention in a variety of disease states. This review emphasizes on the new developments from literature reports on Michael acceptors as potential cysteine protease inhibitors, namely vinyl sulfones, alpha,beta-unsaturated carbonyl derivatives and aza-peptides. These compounds irreversibly alkylate the active site cysteine residue via conjugate addition. Examples of Michael acceptors inhibitors that have already progressed to clinical testing are also presented.  相似文献   

15.
The 3C-like protease (3CLpro), which controls the severe acute respiratory syndrome (SARS) coronavirus replication, has been identified as a potential target for drug design in the treatment of SARS. A series of tetrapeptide phthalhydrazide ketones, pyridinyl esters, and their analogs have been designed, synthesized, and evaluated as potential SARS 3CLpro inhibitors. Some pyridinyl esters are identified as very potent inhibitors, with IC50 values in the nanomolar range (50-65 nM). Electrospray mass spectrometry indicates a mechanism involving acylation of the active site cysteine thiol for this class of inhibitors.  相似文献   

16.
Parasitic cysteine proteases have attracted considerable attention, primarily due to their essential roles in the maintenance of cellular homeostatic processes such as metamorphosis and organogenesis. They also regulate host-parasite interactions by modulating a variety of pathobiological events, including host tissue degradation, nutrient uptake and immune evasion. The specific inhibition of these enzymes, by either immunoprophylaxis or chemotherapy, may potentially impair the survival mechanisms of the parasites. Therefore, these proteases are promising targets for vaccines or chemotherapeutics. To date, a number of cysteine protease inhibitors, including fluoromethyl ketone, heterocyclic oxygen-containing peptidomimetics, or vinyl sulfones, have been introduced and evaluated for protozoan infections. Pioneer studies of parasitic cysteine protease inhibitors have employed irreversible inhibitors. However, recent trends show a use of reversible inhibitors, largely owing to the potential harm of non-selective irreversible inhibitors. Several non-peptide inhibitors that exhibit more drug-like properties have recently been developed, through which protease-mediated degradation can be impeded in living systems. These non-peptide inhibitors also appear to reveal potential for high in vivo activity and selectivity against parasites. This review focuses on the current understanding of the actions and properties of parasitic cysteine proteases and describes advances in the development of specific inhibitors for cysteine proteases, largely based on cathepsins B and L, which may be useful in the development of novel antiparasitic agents.  相似文献   

17.
Atherosclerosis is initially a chronic inflammatory disease as it involves inflammatory cells such as macrophages, T-lymphocytes and mast cells. At later stages, when plaques manifest clinically, thrombosis, coagulation and fibrinolysis contribute to the escalation of the disease, which culminates in acute cardiovascular syndromes. Serine proteases are instrumental in all of these processes, rendering their inhibition of clinical interest for the prevention of atherosclerotic plaque progression. Viral serine protease inhibitors, specifically engineered by pathogens to evade the host's defense system, not only display profound anti-inflammatory activity but also inhibit a range of serine proteases implicated in cardiovascular disease. In this review, the potential of viral serine protease inhibitors in anti-atherosclerotic therapy is discussed.  相似文献   

18.
Serine proteases are attractive targets for the design of enzyme inhibitors since they are involved in the etiology of several diseases. Within the class of serine proteases, HLE is one of the most destructive enzymes in the body. It is implicated in the promotion or exacerbation of a number of diseases including pancreatitis, acute respiratory syndrome, rheumatoid arthritis, atherosclerosis, pulmonary emphysema, and cystic fibrosis. Thrombin, a trypsin-like serine protease, plays a dual role in thrombogenesis, including fibrin formation and platelet activation. As a result, thrombin constitutes one of the most widely studied targets for antithrombotic strategy. Numerous inhibitors of serine proteases have been reported during the past three decades. Among them, coumarin-type molecules displayed a high inhibitory potency towards various serine proteases. At that time, halomethyl dihydrocoumarins have been shown to behave as the first general suicide inhibitors of serine protease. These molecules inhibit several proteases such as human leucocyte elastase, porcine pancreatic elastase, thrombin, urokinase and human plasmin. Isocoumarins are very effective as mechanism-based inhibitors of serine proteases. Pharmacomodulation on the 3-alkoxy-4-chloroisocoumarins and the 3-alkoxy-7-amino-4-chloroisocoumarins led to strong inhibitors of numerous serine proteases such as HLE, human factor XIa and XIIa, thrombin, urokinase and kallikrein. Recently, a series of coumarins characterised by an alkyl, aryl ester, amide, thioester or ketone in the position 3 and an electrophilic chloromethyl moiety in the position 6 have been developed. These compounds were found to be high inhibitors of alpha-chymotrypin, HLE and human thrombin.  相似文献   

19.
Clinical use of non-steroidal anti-inflammatory drugs (NSAIDs) is associated with significant toxicity particularly in the gastrointestinal tract and kidney. Various approaches such as formulation co-administration (of agents to protect the stomach), chemical manipulation and synthesis of new safer anti-inflammatory drugs reported in the literature to overcome the toxicity of NSAIDs have been summarized. As far as synthesis of new more effective and safer anti-inflammatory drugs is concerned, we have reported recent findings in the area of synthesis of heterocyclic compounds such as pyrimidines, imidazole, benzimidazole, thiazole, thiazolidine, acridine, thiourea, alkanoic acid derivatives and other related heterocyclic compounds and their role as inflammation inhibitors.  相似文献   

20.
Background: HCV NS3 is a serine protease that plays a pivotal role in catalyzing the cleavage of the single polyprotein encoded by HCV after infection of hepatocytes. Analysis of the X-ray crystal structure of the enzyme reveals a shallow catalytic site located on the surface of the protein, which has made development of inhibitors a formidable task. Attempts to discover leads by a traditional approach of screening of compound libraries have proved futile and, therefore, researchers have adopted a structure-based drug design. Analysis of the X-ray structure of NS3 protease reveals close proximity of S1-S3 and S2-S4 pockets. Various novel approaches have been used to design preorganized, depeptidized macrocyclic inhibitors linking the P2-P4 groups and P1-P3 residues. Objective: The article summarizes efforts by various groups to develop inhibitors that bind to the active site and inhibit viral replication. Method: Review of recent patents and scientific literature. Conclusion: Macrocyclization has proved to be an effective tool for depeptidization of peptidic inhibitors with improved binding and pharmacokinetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号