首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
目的研究不同甲烷体积分数、不同氮气流量分别对金刚石(111)面、(100)面生长的影响,实现在最佳工艺下制备高取向金刚石薄膜。方法采用微波等离子体增强化学气相沉积法制备高取向(111)面、(100)面金刚石薄膜,实验前一组(1~#—3~#)以CH_4/H_2为气源,后一组(4~#—5~#)以CH_4/H_2/N_2为气源,通过采用SEM、XRD分析不同甲烷体积分数下(111)面和不同氮气流量下(100)面的生长形貌、晶粒尺寸以及金刚石晶面特征峰强弱,同时还使用Raman测试两组分别改变甲烷体积分数、氮气流量工艺下金刚石特征峰、石墨峰的变化趋势。结果前一组随着甲烷体积分数的增加,金刚石(111)面逐渐清晰可见,低甲烷体积分数为2%时,H等离子体对金刚石表面刻蚀严重,形成少量表面粗糙的(111)面,当甲烷体积分数升到4.5%时,(111)面生长非常均匀,金刚石质量较高,继续提高甲烷体积分数,薄膜中非金刚石的含量增加,金刚石质量下降。后一组随着氮气流量的增加,金刚石(100)面的生长非常整齐平滑,在氮气流量为5 cm~3/min时,(100)面比较粗糙,由于有含氮基团的加入,其生长速率加快,进一步升高氮气流量到10 cm~3/min时,含氮基团的择优生长促进(100)面占据整个界面,同时削弱了其他晶面的生长。结论前一组甲烷体积分数为4.5%时,(111)面占据整个生长面,生长非常均匀,同时XRD测试金刚石(111)面特征峰也达到最强。后一组氮气流量为10 cm~3/min时,(100)面表面光洁度和平整度达到最佳。  相似文献   

2.
采用独特的形核-刻蚀-生长-刻蚀-生长…循环沉积工艺,用微波等离子体化学气相沉积(MWPCVD)法制备出了高纯、高度[100]择优取向的金刚石薄膜。SEM和XRD分析表明得到的膜材具有很高的[100]择优取向性;Raman光谱和SEM对照分析证实膜材的金刚石相组成纯净度高,是高纯、高度[100]择优取向的织构金刚石薄膜。暗电流Ⅰ-Ⅴ特性测试结果表明,这种薄膜的电阻率达到10H数量级以上,比常规工艺制备的膜高近两个数量级,是一种性能优良的电子薄膜材料。理论分析表明,薄膜电阻率大幅度提高的原因在于膜层中非金刚石相含量的显著减少。  相似文献   

3.
碳源浓度对金刚石薄膜涂层刀具性能的影响   总被引:3,自引:1,他引:2  
用热丝CVD法,以丙酮为碳源,在WC-Co硬质合金衬底上沉积金刚石薄膜,研究了碳源浓度对金刚石薄膜涂层刀具性能的影响,结果表明,碳源浓度对金刚石涂层薄膜质量、形貌和粗糙度、薄膜与衬底间的附着力、刀具的耐用度用度发削性能有显著影响,合理控制碳源浓度对获得实用化的在硬质合金刀具基础上沉积高附着强度、低粗糙度金刚石薄膜的新技术具有重要的意义。  相似文献   

4.
采用独特的形核-刻蚀-生长-刻蚀-生长…循环沉积工艺,用微波等离子体化学气相沉积(MWPCVD)法制备出了高纯、高度[100]择优取向的金刚石薄膜.SEM和XRD分析表明得到的膜材具有很高的[100]择优取向性;Raman光谱和SEM对照分析证实膜材的金刚石相组成纯净度高,是高纯、高度[100]择优取向的织构金刚石薄膜.暗电流I-V特性测试结果表明,这种薄膜的电阻率达到1014数量级以上,比常规工艺制备的膜高近两个数量级,是一种性能优良的电子薄膜材料.理论分析表明,薄膜电阻率大幅度提高的原因在于膜层中非金刚石相含量的显著减少.  相似文献   

5.
《硬质合金》2017,(6):407-412
采用直流辉光放电等离子体设备在单晶碳化硅表面沉积高晶取向金刚石薄膜,研究了预处理方法、基片温度以及甲烷浓度(甲烷与氢气的体积比)对金刚石薄膜晶粒取向的影响。用SEM、Raman等测试方法对金刚石薄膜进行表征。结果表明:研磨处理可以提高金刚石形核密度,高的形核密度有利于金刚石薄膜的沉积;过高或过低的基片温度会使得金刚石薄膜表现出(111)面生长的趋势;高甲烷浓度和低甲烷浓度也会使得金刚石薄膜晶粒取向发生改变。最终采用850℃以及5%甲烷浓度这一沉积参数进行金刚石薄膜的沉积,制备出了取向度非常好的(100)面金刚石薄膜。  相似文献   

6.
燃焰法生长高质量金刚石薄膜的研究   总被引:1,自引:0,他引:1  
  相似文献   

7.
本文用氢气、丙酮作为气体源,用微波等离子体化学气相沉积方法,在CBN单晶的(111)晶面及单晶硅的(100)晶面上进行了金刚石薄膜异质外延生长的研究。用SEM、MLR和X-ray衍射方法对试验结果进行了观察、分析。通过实验发现,在CBN单晶的(111)晶面及单晶硅的(100)晶面上直接实现金刚石薄膜的异质外延生是不太可能的。  相似文献   

8.
金刚石砂轮磨削铁氧体的表面粗糙度与形貌分析   总被引:1,自引:1,他引:0  
本文研究了树脂结合剂金刚石砂轮磨削铁氧体材料时,磨削深度、工件进给速度对磨削表面粗糙度和材料去除方式的影响规律,以此探索提高铁氧体磨削表面质量的有效途径。采用单因素法设计试验方案对铁氧体进行磨削,测量表面粗糙度数据并对其进行方差分析,对铁氧体磨削表面形貌进行观察。结果表明:随着磨削深度、工件进给速度的增加,表面粗糙度值升高,同时表面塑性痕迹减少,脆性断裂痕迹增加,且磨削深度对表面粗糙度的影响要比工件进给速度的更显著,因此,制定磨削工艺时,考虑到粗磨为了提高效率,降低表面损伤,优化得到磨削工艺为磨削深度5μm,工件进给速度10 m/min;精磨为了获得较低的表面粗糙度,采用磨削深度5μm、工件进给速度为5 m/min,可以提高磨削表面延展性。  相似文献   

9.
10.
目的研究不同甲烷体积分数对纳米金刚石(NCD)薄膜生长的影响,实现较小晶粒尺寸、高平整度的NCD薄膜的制备。方法采用微波等离子体增强化学气相沉积的方法制备NCD薄膜,以CH4/H2为气源,在生长阶段控制其他条件不变的前提下,探讨不同甲烷体积分数对NCD晶粒尺寸、表面形貌以及表面粗糙度的影响。采用SEM、XRD等观测NCD薄膜的表面形貌和晶粒尺寸大小,并利用Raman对NCD薄膜的不同散射峰进行分析。结果随着甲烷体积分数的增加,薄膜晶粒尺寸有减小的趋势。甲烷体积分数较低时,晶形比较完整,但致密度较小;甲烷体积分数较高时,晶形杂乱无章,但致密度较好。当甲烷体积分数为9%时NCD薄膜平均粒径达到最小,为21.3 nm,表面粗糙度较好,但非晶金刚石成分开始大量生成,NCD薄膜质量开始变差;当甲烷体积分数为8%时其形貌最好,且此时最小表面粗糙度小于20 nm。通过Raman分析可知NCD薄膜中出现了硅峰和石墨烯特征峰。结论甲烷体积分数对NCD薄膜形貌有较大影响,甲烷体积分数为8%时是表面平整度由较差变好再逐渐变差的分界点,且平均晶粒尺寸为23.6 nm,薄膜表面具有较好的平整度。  相似文献   

11.
纳米金刚石薄膜的应用及其研究进展   总被引:4,自引:4,他引:0  
熊礼威  崔晓慧  汪建华  张莹  易成  吴超  张林 《表面技术》2013,42(5):98-102,111
以纳米金刚石薄膜的应用为主线,讨论了它在机械、光学、声学、电学等应用领域的优势,以实例分析、证明了其在各领域中所展现出的优异性能。综述了纳米金刚石薄膜在上述应用领域的研究进展,同时从不同方向阐释了其研究应用过程中所存在的不足,并对其今后的主要发展方向进行了展望。  相似文献   

12.
利用扫描电镜观察了CVD自支撑金刚石薄膜的表面形貌组织,利用X射线衍射技术检测了薄膜织构。研究表明,不同衬底温度条件下制备的金刚石薄膜形成不同的织构和表面形貌组织,衬底温度升高使生长速率参数α减小,金刚石晶体最快生长晶向由〈100〉晶向向〈011〉和〈111〉晶向转变,使得薄膜中{011}和{111}织构随温度提高不断...  相似文献   

13.
CVD金刚石薄膜涂层刀具切削SiCp/Al的适应性及失效机理   总被引:3,自引:0,他引:3  
用切削力实时测量,后刀面磨损量检测以及扫描电镜下检查刀面涂层等手段,研究了CVD金刚石薄膜涂层刀具对切削SiCp/Al复 适应性,并探索了金刚石薄膜刀具的磨损破及其影响因素,结果表明,金刚石薄膜脱落是这类刀具的主要失效形式,适当参数下沉积的金刚石薄膜涂层刀具对某些成分和组织结构的SiCp/Al精加工和半精加工具有较好的适应性。  相似文献   

14.
基于内涨鼓泡实验的金刚石膜附着强度精确定量评价   总被引:2,自引:0,他引:2  
根据内涨作用下薄膜发生鼓泡变形的原理,开发了1种新的适用于金刚石膜附着强度精确定量评价的测试系统。并在传统的硅平面加工工艺的基础上发展了1种新的在沉积好的基片上制备自支撑窗口试样的方法,该方法可以保证在刻蚀基底形成自支撑窗口的同时不会损坏到薄膜。通过实验,实现了对硅基底金刚石膜结合强度的定量检测,实验得到的薄膜结合强度为4.28726J/m^2。实验所测得的附着强度结果与有限元仿真结果类比的吻合,证实了该模型的有效性,从而为金刚石膜的制备工艺优化及其质量的评估提供了可靠的依据和标准,对促进金刚石膜材料的深度开发和工程应用将具有积极的意义。  相似文献   

15.
非金刚石相碳成分对金刚石薄膜晶形的影响   总被引:1,自引:0,他引:1  
杨国伟  毛友德 《表面技术》1994,23(4):164-166
应用Raman光谱和SEM方法研究了在用热丝CVD方法生长金刚石薄膜中,生长膜中非金刚石相碳成分对金刚石晶粒晶形的影响。还讨论了生长条件如碳源浓度、衬底温度等对生长膜中非金刚石相碳成分的影响  相似文献   

16.
A chemical vapor deposition (CVD) system has been used to produce polycrystalline and nanocrystalline diamond (NCD) films. For biomedical and electronic engineering applications, it is highly desirable to deposit smooth films with decreased crystal size. In general, diamond coatings with a crystal size of 10-100 nm range are known as NCD. There are several ways in which NCD may be deposited including growth from fullerene precursors with argon dilution. Several workers have proposed various mechanisms for the growth process using inert gas dilution to conventional hot filament (HF) or microwave chemical vapor deposition (MWCVD) systems, or NCD growth through the deployment of CO2/CO or O2-rich gas environments. However, the use of inert gas dilution, with carbon containing species is the least complex approach to growing nanocrystalline, and more recently, ultrananocrystaline diamond (UNCD). Mechanical properties of UNCD have been determined by nanoindentation, and their nanotribological properties have been measured by nano-scratch and nano-impact testing. The relative importance of toughness (∼E/H ratio) and elastic strain-to-break (∼H/E ratio) of these systems on their behavior in nano-scratch and nano-impact tests is considered, and strategies for optimizing the deposition conditions for enhanced durability under different contact conditions are suggested in this short communication.  相似文献   

17.
金刚石薄膜膜基界面结合强度测量技术的研究进展   总被引:3,自引:0,他引:3  
膜基界面结合强度的测量与评价是金刚石薄膜制备与应用关键问题,本文介绍了国内外金刚石薄膜膜基界面结合强度的几种典型的测量方法,着重探讨了膜基界面结合强度的精确定量测量技术的研究现状以及发展趋势,提出了用一种新的内涨鼓泡测量法,对复杂形状基体上金刚石薄膜膜基界面结合强度进行精确定量检测,为金刚薄膜的制备工艺优化及其质量的评估提供可靠的依据和标准。  相似文献   

18.
在铜基体复合电沉积金刚石-铜过渡层,用热丝CVD法对铜基镶嵌结构界面金刚石膜的初期生长过程进行了研究。结果表明:不规则的露头金刚石在CVD生长初期逐渐转化为规则的刻面金刚石,长大速率呈现先增加后降低的趋势,伴随着刻面的形成,在露头金刚石与电镀铜二面角处开始二次形核,二次晶粒与电镀铜形成新的二面角并促进二次形核,如此繁衍长大的结果是二次晶粒填充在露头金刚石颗粒沟槽之间,形成连续的金刚石膜。  相似文献   

19.
采用直流等离子体CVD法制备了金刚石膜,利用X射线衍射、光学显微镜、扫描电镜、激光拉曼光谱等技术研究了金刚石膜的微观组织,晶粒择优取向生长过程。结果表明:开始形核时,晶粒随机无择优生长;对基体表面氢刻蚀预处理,有利于晶胚形核长大。甲烷浓度对金刚石膜晶粒择优取向生长有重要影响:甲烷浓度较低时,金刚石膜(100)面择优生长,形成以(111)为主的八面体晶体,并且可以制取中心和边缘均匀、高质量光学级自支撑金刚石膜,但生长速率慢,效率低。同时也发现金刚石膜存在空位、孔洞等缺陷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号