首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Eye irritation symptoms, e.g. dry eyes, are common and abundant symptoms reported in office-like environments, e.g. aircraft cabins. To improve the understanding of indoor related eye symptomatology, relevant knowledge from the ophthalmological and indoor environmental science literature has been merged. A number of environmental (relative humidity, temperature, draft), occupational (e.g. visual display unit work), and individual (e.g. gender, use of cosmetics, and medication) risk factors have been identified, which are associated with alteration of the precorneal tear film (PTF); these factors may subsequently exacerbate development of eye irritation symptoms by desiccation. Low relative humidity including reduced atmospheric pressure further increases the water evaporation from an altered PTF; in addition, work with visual display units may destabilize the PTF by lower eye blink frequency and larger ocular surface. Results from epidemiological and clinical studies support that relative humidity >40% is beneficial for the PTF. Only few pollutants reach high enough indoor concentrations to cause sensory irritation of the eyes, while an altered PTF may exacerbate their sensory effect. Sustained low relative humidity causes impairment of the PTF, while its stability, including work performance, is retained by low gaze and intermittent breaks.  相似文献   

2.
Sensory effects in eyes and airways are common symptoms reported by aircraft crew and office workers. Neurological symptoms, such as headache, have also been reported. To assess the commonality and differences in exposures and health symptoms, a literature search of aircraft cabin and office air concentrations of non-reactive volatile organic compounds (VOCs) and ozone-initiated terpene reaction products were compiled and assessed. Data for tricresyl phosphates, in particular tri-ortho-cresyl phosphate (ToCP), were also compiled, as well as information on other risk factors such as low relative humidity.A conservative health risk assessment for eye, airway and neurological effects was undertaken based on a “worst-case scenario” which assumed a simultaneous constant exposure for 8 h to identified maximum concentrations in aircraft and offices. This used guidelines and reference values for sensory irritation for eyes and upper airways and airflow limitation; a tolerable daily intake value was used for ToCP. The assessment involved the use of hazard quotients or indexes, defined as the summed ratio(s) (%) of compound concentration(s) divided by their guideline value(s).The concentration data suggest that, under the assumption of a conservative “worst-case scenario”, aircraft air and office concentrations of the compounds in question are not likely to be associated with sensory symptoms in eyes and airways. This is supported by the fact that maximum concentrations are, in general, associated with infrequent incidents and brief exposures. Sensory symptoms, in particular in eyes, appear to be exacerbated by environmental and occupational conditions that differ in aircraft and offices, e.g., ozone incidents, low relative humidity, low cabin pressure, and visual display unit work. The data do not support airflow limitation effects. For ToCP, in view of the conservative approach adopted here and the rareness of reported incidents, the health risk of exposure to this compound in aircraft is considered negligible.  相似文献   

3.
ObjectivesAn increasing number of complaints related to time spent in artificially ventilated buildings have been progressively reported and attributed, at least in part, to physical and chemical exposures in the office environment. The objective of this research was to investigate the association between the prevalence of work-related symptoms and the indoor air quality, comparing a sealed office building with a naturally ventilated one, considering, specially, the indoor concentration of TPM, TVOCs and the main individual VOCs.MethodsA cross-sectional study was performed to compare the prevalence of sick building syndrome (SBS) symptoms among 1736 office workers of a sealed office building and 950 of a non-sealed one, both in Rio de Janeiro's downtown. The prevalence of symptoms was obtained by a SBS standardized questionnaire. The IAQ of the buildings was evaluated through specific methods, to determine the temperature, humidity, particulate matter and volatile organic compound (VOC) concentrations.ResultsUpper airways and ophthalmic symptoms, tiredness and headache were highly prevalent in both buildings. Some symptoms were more prevalent in the sealed building: “eye dryness” 33.3% and 27.1% (p: 0.01); “runny nose” 37.3% and 31.3% (p: 0.03); “dry throat” 42% and 36% (p: 0.02); and “lethargy” 58.5% and 50.5% (p: 0.03) respectively. However, relative humidity and indoor total particulate matter (TPM) concentration as well as total volatile organic compounds (TVOCs) were paradoxically greater in the non-sealed building, in which aromatic compounds had higher concentration, especially benzene. The analysis between measured exposure levels and resulting symptoms showed no association among its prevalence and TPM, TVOCs, benzene or toluene concentration in none of the buildings.ConclusionsOther disregarded factors, like undetected VOCs, mites, molds and endotoxin concentrations, may be associated to the greater prevalence of symptoms in the sealed building.  相似文献   

4.
Contrasting effects of the dilution of indoor generated pollutants and the energy efficiency of heating and ventilating air conditioning systems (HVAC) for indoor air quality (IAQ) and thermal comfort were studied for 10 Kuwaiti residences. The levels of volatile organic compounds (VOCs) and the calculated cooling load of the HVAC systems were used as indicators for the IAQ and for the energy consumption, respectively. Air exchange rates and VOCs levels (both indoor and outdoor) were measured. It was found that the outdoor VOC concentrations were always less than the indoor values. Therefore reduction of indoor VOC levels can be accomplished either by increasing the ratio of the makeup air to the recirculation air of the HVAC system or by increasing the infiltration airflow rate through openings. A single compartment IAQ model, modified by the authors, was used to test for the variation in the above two dilution modes and to test the performance sensitivity. Hence, the optimum parameters in terms of IAQ and energy consumption were determined. The results indicated that it was necessary to increase the ratio of the makeup air to the recirculation air from its typical design value of 0.5 to a range of 0.7-1.3 in order to reduce indoor VOC to acceptable levels.  相似文献   

5.
The airway irritation of a reaction mixture of R-(+)-limonene and ozone was evaluated by a mouse bioassay in which sensory irritation, bronchoconstriction and pulmonary irritation were measured. Significant sensory irritation (33% reduction of mean respiratory rate) was observed by dynamic exposure of the mice, during 30 min, to a ca. 16 s old reaction mixture of ozone and limonene. The initial concentrations were nominally 4 ppm O3 and 48 ppm limonene. After reaction, the residual O3 was <0.03 ppm. Conventional analytical chemical methods were used to measure the formation of readily identified and stable products. Besides the expected products, 1-methyl-4-acetylcyclohexene (AMCH), 3-isopropenyl-6-oxoheptanal (IPOH), formaldehyde and formic acid, autooxidation products of limonene and a series of compounds including acetone, acrolein and acetic acid, which may or may not be artefacts, were identified. Addition of the sensory irritation effects of the residual reactants and all the identified compounds could not explain the observed sensory irritation effect. This suggests that one or more strong airway irritants were formed. Since limonene is common in the indoor air, and ozone is infiltrated from outdoors and/or produced indoors (e.g., by photocopiers), such oxidation reactions may be relevant for indoor air quality.  相似文献   

6.
The airway irritation of a reaction mixture of R-(+)-limonene and ozone was evaluated by a mouse bioassay in which sensory irritation, bronchoconstriction and pulmonary irritation were measured. Significant sensory irritation (33% reduction of mean respiratory rate) was observed by dynamic exposure of the mice, during 30 min, to a ca. 16 s old reaction mixture of ozone and limonene. The initial concentrations were nominally 4 ppm O3 and 48 ppm limonene. After reaction, the residual O3 was <0.03 ppm. Conventional analytical chemical methods were used to measure the formation of readily identified and stable products. Besides the expected products, 1-methyl-4-acetylcyclohexene (AMCH), 3-isopropenyl-6-oxoheptanal (IPOH), formaldehyde and formic acid, autooxidation products of limonene and a series of compounds (i.e., acetone, acrolein and acetic acid), which may or may not be artefacts, were identified. Addition of the sensory irritation effects of the residual reactants and all the identified compounds could not explain the observed sensory irritation effect. This suggests that one or more strong airway irritants were formed. Since limonene is common in the indoor air, and ozone is infiltrated from outdoors and/or produced indoors (e.g., by photocopiers), such oxidation reactions may be relevant for indoor air quality.  相似文献   

7.
Exposure to airborne pollutants can result in adverse health effects. Acute symptoms can for instance comprise of irritation of the eyes or of the respiratory tract (called sensory irritation). In a recent case, health problems were reported in a French school and supposedly attributed to the presence of airborne irritant pollutants. Based on measured concentrations, the risk of developing the described health effects was assessed.Numerous airborne sensory irritants (aldehydes, organic acids, volatile organic compounds (VOCs), SO(2), NH(3)) were identified and quantified in the indoor air by using active and passive sampling and online monitoring techniques. Reference values based on toxicological properties of compounds (sensory irritants) were taken from the literature. If not available, tentative values were specially developed for this purpose. Concentrations of all sensory irritants remain below their corresponding guideline values and are comparable to literature data. It was concluded that the risk of developing sensory irritation due to the presence of the studied compounds is negligible. This holds both for individual compounds and for the mixture of studied compounds. Limitations of the employed sampling strategy, and of existing sampling and analytical techniques, which do not allow for analysing more reactive compounds-which are strong sensory irritants-may play a role. New sampling techniques need to be developed. Psychosocial factors (group behaviour, increased attention to sensory irritation) should also be taken into account when dealing with health complaints on sensory irritation.  相似文献   

8.
Volatile organic compounds (VOCs) are the major pollutants in indoor air, which significantly impact indoor air quality and thus influencing human health. A long-term exposure to VOCs will be detrimental to human health causing sick building syndrome (SBS). Photocatalytic oxidation of VOCs is a cost-effective technology for VOCs removal compared with adsorption, biofiltration, or thermal catalysis. In this paper, we review the current exposure level of VOCs in various indoor environment and state of the art technology for photocatalytic oxidation of VOCs from indoor air. The concentrations and emission rates of commonly occurring VOCs in indoor air are presented. The effective catalyst systems, under UV and visible light, are discussed and the kinetics of photocatalytic oxidation is also presented.  相似文献   

9.
Sixteen existing multi-family buildings (94 apartments) in Finland and 20 (96 apartments) in Lithuania were investigated prior to their renovation in order to develop and test out a common protocol for the indoor environmental quality (IEQ) assessment, and to assess the potential for improving IEQ along with energy efficiency. Baseline data on buildings, as well as data on temperature (T), relative humidity (RH), carbon dioxide (CO2), carbon monoxide (CO), particulate matter (PM), nitrogen dioxide (NO2), formaldehyde, volatile organic compounds (VOCs), radon, and microbial content in settled dust were collected from each apartment. In addition, questionnaire data regarding housing quality and health were collected from the occupants. The results indicated that most measured IEQ parameters were within recommended limits. However, different baselines in each country were observed especially for parameters related to thermal conditions and ventilation. Different baselines were also observed for the respondents' satisfaction with their residence and indoor air quality, as well as their behavior related to indoor environment. In this paper, we present some evidence for the potential in improving IEQ along with energy efficiency in the current building stock, followed by discussion of possible IEQ indicators and development of the assessment protocol.  相似文献   

10.
上海城区典型臭氧浓度偏低年的成因分析   总被引:2,自引:0,他引:2  
利用2006~2010年上海徐家汇、崇明、宝山、金山和浦东5个监测站的臭氧资料,分析了上海地区不同功能区臭氧的浓度特征及年际变化特征。结果表明:2006年上海地区臭氧平均浓度是这5 a的最低值,以徐家汇和浦东两个站臭氧浓度年际差异最为明显。2006年各站春末和夏季的臭氧浓度明显低于其他年份,而秋冬季臭氧浓度却差别不大。以徐家汇地区为例的综合分析表明,天气状况、日照时数、温度和风速等气象要素不是造成2006年上海城区臭氧浓度偏低的原因,臭氧前体物(VOCs和NOx)才是造成这种现象的主要原因。2006年4~8月NOx和VOCs浓度明显偏低,典型臭氧日变化情况下2006年VOCs/NOx比值较小,平均值为1.22,比2007、2008年低了近65%,而O3的生产率也分别减少了65%和59%。OZIPR模式的结果也表明较低的VOCs浓度以及VOCs/NOx比值,是导致2006年上海城区臭氧浓度偏低的主要原因  相似文献   

11.
Conventional control strategies for volatile organic compounds (VOCs), a precursor to ozone, are identified. The control measures have been adopted by states in their efforts to attain the national ambient air quality standard for ozone by statutorily mandated deadlines. An inventory of viable control approaches for VOCs is presented, rather than a discussion of the approaches' comparative merits or of available alternatives. Focus is placed upon the technologies and control measures that U.S. EPA has identified as “reasonably available”, considering such criteria as effectiveness, costs, and associated energy and environmental impacts. These regulatory approaches include such strategies as vapor control in gasoline marketing, low solvent technologies and/or add-on control equipment for surface coating operations, and vehicle inspection and maintenance programs. By adopting these and additional control measures, as required, most states are projecting attainment of the ozone standard by 1987.  相似文献   

12.
Dried detergent residue left in carpets after they were shampooed with underdiluted carpet shampoo caused respiratory irritation among most employees in an office building and among all staff members and most children in a day-care center. Symptoms included cough, dry throat, difficulty in breathing, nasal congestion, and headache. Eye irritation was also noted by day-care center staff members. Symptoms persisted for many weeks until the carpets were wet extracted. The major ingredient of the three shampoo products implicated in these two outbreaks and in a third similar report in sodium dodecyl sulfate, a respiratory irritant in mice. Unpublished occupational investigations suggest that soap dust exposure may be associated pulmonary function abnormalities in some exposed workers. Detergent dust is a newly recognized example of indoor air pollution and should be considered when patients or employees complain of building-specific respiratory or eye irritation.  相似文献   

13.
To date, personal volatile organic compounds (VOCs) exposure and residential indoor and outdoor VOCs levels have not been characterized in Korea. In this study, residential indoor and outdoor VOCs concentrations were measured and compared simultaneously with the personal exposure for each of 30 participants in a medium city, Asan, and in a metropolitan city, Seoul. Factors that influence personal VOCs exposures were assessed in relation to house characteristics and time activity information. All VOC concentrations were measured using passive samplers during a 24-h period and analyzed using GC-MS. Ten target VOCs were benzene, trichloroethylene, toluene, o-xylene, p-xylene, ethylbenzene, MIBK, n-octane, styrene, and 1,2-dichlorobenzene. Residential indoor and outdoor VOCs concentrations measured in Seoul were significantly higher than those in Asan. Indoor/outdoor (I/O) ratios for all target compounds ranged from 0.94 to 1.51 and I/O ratios of Asan were a little higher than those of Seoul. Results indicate that time activity information can be used to predict personal exposures, although such predictions will result in an over estimation compared to measured exposures. Factors which influence the indoor VOCs level and its personal exposure in relation to house characteristics included house age, indoor smoking, and house type.  相似文献   

14.
The effect of reduced air infiltration rate caused by energy-saving measures has been studied by comparing the indoor climate in 25 sealed apartments with the conditions in 25 unsealed apartments in four seasonal periods. The indoor temperature in bedrooms during February and March was 19.3 °C in sealed apartments and 17.8 °C in unsealed apartments, and the occupants in the sealed apartments correspondingly complained less frequently of draught problems during the winter. When the frequency of window opening was at its minimum (February–March), there was a higher indoor humidity in sealed compared with unsealed apartments, and this probably accounts for an increased occurrence of house-dust mites in dust from the sealed apartments during the winter. Also in February–March there was a slight increase in the concentration of suspended particulate matter in sealed apartments. Considering health effects of a reduced air infiltration rate, it can be predicted that the increased indoor air humidity will indirectly increase the frequency and severity of house-dust mite allergy in the population.  相似文献   

15.
An emission model for indoor volatile organic compounds (VOCs) based on mass balance considerations has been presented and validated under steady state conditions. Comparison were made for the measured and predicted concentrations of 37 selected VOCs and TVOC through a case intervention study on the filters of the ventilation system in a new commercial air-conditioned office building. The intervention involved replacing media filters with electronic and carbon filtration. TVOC and 37 compounds selected for their health and comfort impact, representation of major chemical classes that occur in indoor air and their utility as markers of pollution sources were studied. The concentration levels predicted by the model were compared with actual measurements. Twenty-five target compounds and the TVOC were adequately described by the model where the measured concentrations were in agreement with the predicted concentrations. Modeling of the remaining 12 compounds was found to be affected by the emission rates that were occupant related.  相似文献   

16.
Addition of urea-based antifreeze admixtures during cement mixing can make it possible to produce concrete cement in construction of buildings in cold weather; this, however, has led to increasing indoor air pollution due to continuous transformation and emission from urea to gaseous ammonia in indoor concrete wall. It is believed that ammonia is harmful to human body and exposure to ammonia can cause some serious symptoms such as headaches, burns, and even permanent damage to the eyes and lungs. In order to understand the emission of ammonia from indoor concrete wall in civil building and assess the health risk of people living in these buildings, the experimental pieces of concrete wall were first prepared by concreting cement and urea-based antifreeze admixtures to simulate the indoor wall in civil building in this work. Then environmental chamber was adopted for studying the effect of temperature, relative humility and air exchange rate on emission of ammonia from experimental pieces of concrete wall. Also the field experiment was made at selected rooms in given civil buildings. Exposure and potential dose of adult and children exposed to indoor/outdoor ammonia in summer and in winter are calculated and evaluated by using Scenario Evaluation Approach. The results indicated that high air exchange rate leads to decreased ammonia concentration, and elevation of temperature causes increasing ammonia concentration and volatilizing rate in chamber. The complete emission of ammonia from the wall containing urea-based antifreeze admixtures needs more than 10 years in general. Ventilating or improving air exchange can play a significant role in reducing ammonia concentration in actual rooms in field experiments. Urea-based antifreeze admixtures in concrete wall can give rise to high exposure and potential dose, especially in summer. Generally, adults have a high potential dose than children, while children have personal average dose rate beyond adults in the same conditions.  相似文献   

17.
According to the World Health Organization (WHO), indoor air pollution (IAP) from the use of solid fuels in households in the developing world is responsible for more than 1.6 million premature deaths each year, whereof 0.42 million occur in China alone. We argue that the methodology applied by WHO--the so-called fuel-based approach--underestimates the health effects, and suggest an alternative method. Combining exposure-response functions and current mortality and morbidity rates, we estimate the burden of disease of IAP in China and the impacts of three abatement scenarios. Using linear exposure-response functions, we find that 3.5 [0.8-14.7 95% CI] million people die prematurely due to IAP in China each year. The central estimate constitutes 47% of all deaths in China. We find that modest changes in the use of cooking fuels in rural households might have a large health impact, reducing annual mortality by 0.63 [0.1-3. 2 95% CI] million. If the indoor air quality (IAQ) standard set by the Chinese government (150 microg PM(10)/m(3)) was met in all households, we estimate that 0.9 [0.2-4.8] million premature deaths would be avoided in urban areas and 2.8 [0.7-12.4] million in rural areas. However, in urban areas this would require improvements to the outdoor air quality in addition to a complete fuel switch to clean fuels in households. We estimate that a fuel switch in urban China could prevent 0.7 [0.2-4.8] million premature deaths. The methodology for exposure assessment applied here is probably more realistic than the fuel-based approach; however, the use of linear exposure-response relationships most likely tends to overestimate the effects. The discrepancies between our results and the WHO estimates is probably also explained by our use of "all-cause mortality" which includes important causes of death like cardiovascular diseases, conditions known to be closely associated with exposure to particulate pollution, whereas the WHO estimate is limited to respiratory diseases.  相似文献   

18.
冬季,中国北方通过集中供暖提高室内温度,而非集中供暖的南方部分地区室内阴冷,对于供暖的需求日益显现。针对仅以空气温度为依据划分的现有中国供暖区与实际人体供暖需求不一致的问题,利用1971~2010年全国740个气象站点旬气候资料,基于综合空气温度和空气湿度的体感温度模型,分析了体感温度的空间分布格局,重新界定了公里级的中国供暖需求分区。分区结果显示供暖需求高的区域(最高需求区及高需求区)面积比现有的集中供暖区大,增加的供暖需求高的地区主要位于长江中下游地区。新的供暖需求分区结果考虑了空气湿度的影响,与现有的仅考虑空气温度的供暖分区相比,更接近人体对室内冷热程度的直观感受,这可以为我国不同地区制定冬季采暖政策提供科学依据。  相似文献   

19.
A novel technique, gas chromatography-UV spectrometry (GC-UV), was used to quantify volatile organic compounds (VOCs) in settled dust from 389 residences in Sweden. The dust samples were thermally desorbed in an inert atmosphere and evaporated compounds were concentrated by solid phase micro extraction and separated by capillary GC. Eluting compounds were then detected, identified, and quantified using a diode array UV spectrophotometer. Altogether, 28 compounds were quantified in each sample; 24 of these were found in more than 50% of the samples. The compounds found in highest concentrations were saturated aldehydes (C5-C10), furfuryl alcohol, 2,6-di-tert-butyl-4-methylphenol (BHT), 2-furaldehyde, and benzaldehyde. Alkenals were also found, notably 2-butenal (crotonaldehyde), 2-methyl-propenal (methacrolein), hexenal, heptenal, octenal, and nonenal. The concentrations of each of the 28 compounds ranged between two to three orders of magnitude, or even more. These results demonstrate the presence of a number of VOCs in indoor dust, and provide, for the first time, a quantitative determination of these compounds in a larger number of dust samples from residents. The findings also illustrate the potential use of GC-UV for analysing volatile compounds in indoor dust, some of which are potential irritants (to the skin, eyes or respiratory system) if present at higher concentrations. The potential use of GC-UV for improving survey and control of the human exposure to particle-bound irritants and other chemicals is inferred.  相似文献   

20.
A sample of 58 occupied homes in Rochester, NY, most of which incorporated special builder-designed weatherization components, were studied to assess (1) the effectiveness of construction techniques designed to reduce air leakage; (2) the indoor air quality and air-exchange rates in selected airtight houses, and (3) the impact on indoor air quality of mechanical ventilation systems employing air-to-air heat exchangers. The “specific leakage area” was measured in each house using the fan pressurization technique. Houses built with polyethylene vapor barriers and joint-sealing were as a group 50% tighter than a similar group of houses without such components. Mechanical ventilation systems with air-to-air heat exchangers were installed in nine relatively airtight houses, some of which had gas stoves and/or tobacco smoking occupants. Air-exchange rates and indoor concentrations of radon (Rn), formaldehyde (HCHO), nitrogen dioxide (NO2), and humidity were measured in each house for 1-week periods with and without mechanical ventilation. More detailed measurements, including concentrations of carbon monoxide and inhalable particulates, were made in two of these houses by a mobile laboratory. In all nine houses, air-exchange rates were relatively low (0.2–0.5 ach) without mechanical ventilation, and yet indoor concentrations of Rn, HCHO, and NO2 were below existing guidelines. Mechanical ventilation systems were effective in further reducing indoor contaminant concentrations. We conclude that when contaminant source strengths are low, acceptable indoor air quality can be compatible with low air-exchange rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号