首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 52 毫秒
1.
Elementary flux mode (EFM) analysis was used in the metabolic analysis of central carbon metabolism in Saccharomyces cerevisiae based on constructed cellular network. Calculated from the metabolic model, the ethanol-producing pathway No. 37 furthest converts the substrate into ethanol among the 78 elementary flux modes. The in silico metabolic phenotypes predicted based on this analysis fit well with the fermentation performance of the engineered strains, KAM3 and KAMll, which confirmed that EFM analysis is valid to direct the construction of Saccharomyces cerevisiae engineered strains, to increase the ethanol yield.  相似文献   

2.
Propanoic acid accumulated in an ethanol-methane coupled fermentation process affects the ethanol fermentation by Saccharomyces cerevisiae. The effects of propanoic acid on ethanol production were examined in cassava mash under different pH conditions. Final ethanol concentrations increased when undissociated propanoic acid was <30.0 mmol·L-1 . Propanoic acid, however, stimulated ethanol production, as much as 7.6% under proper conditions, but ethanol fermentation was completely inhibited when undissociated acid was >53.2 mmol·L-1 . Therefore, the potential inhibitory effect of propanoic acid on ethanol fermentation may be avoided by controlling the undissociated acid concentrations through elevated medium pH. Biomass and glycerol production decreased with propanoic acid in the medium, partly contributing to increased ethanol concentration.  相似文献   

3.
    
BACKGROUND: During anaerobic bioethanol fermentation of Saccharomyces cerevisiae, the main byproduct glycerol is essential to regulate redox balance (reoxidize NADH to NAD+), which is necessary to maintain cell growth and fermentation. Hetero‐expression of a NADP+‐dependent glyceraldehydes‐3‐phosphate dehydrogenase (GAPN) [EC.1.2.1.9] in S. cerevisiae could redirect the carbon flux from glycerol to ethanol involving a net oxidation of NADH. The present study investigates whether combination of GAPN hetero‐expression and glycerol exporter Fps1p disruption would result in less glycerol and more ethanol production without affecting growth rate during anaerobic fermentations. RESULTS: The results of anaerobic fermentations showed that the fps1Δ mutant with GAPN (named 4FG) produced 21.47% less glycerol and 9.18% more ethanol compared with a parental strain with a control plasmid, while the rates of growth and fermentation were not changed. Moreover, the engineered strain 4FG yielded less glycerol and acetic acid, and more ethanol than the control, fps1Δ mutant or with GAPN only. CONCLUSIONS: During anaerobic fermentations, hetero‐expression of GAPN restored the reduced grow rate of the fps1Δ mutant, and led to less byproducts and more ethanol production. This combination strategy could be used to modulate glycerol metabolism and optimize the anaerobic fermentation of S. cerevisiae. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
    
The production of enriched fructose syrups and ethanol from a synthetic medium with high sucrose concentrations was studied in a batch process using Saccharomyces cerevisiae ATCC 36858. The results showed that the fructose yield was above 92% of theoretical values in synthetic media with sucrose concentrations between 180 g dm?3 and 726 g dm?3. Ethanol yield was about 82% in media with sucrose concentrations up to 451 g dm?3. A product containing 178 g dm?3 fructose, which represents 97% of the total sugar content, and 79 g dm?3 ethanol was obtained using a medium with 360 g dm?3 sucrose. The fructose fraction in the carbohydrates content in the produced syrups decreased with increases in the initial sucrose concentration. In a medium with initial sucrose concentration of 574 g dm?3, the fructose content in the produced broth was 59% of the total carbohydrates. Glycerol and fructo‐oligosaccharides were also produced in this process. The produced fructo‐oligosaccharides started to be consumed when the concentration of sucrose in the media was less than 30% of its initial value. Complete hydrolysis of these sugars was noticed in media with sucrose concentrations below 451 g dm?3. These findings will be useful in the production of ethanol and high fructose syrups using sucrose‐based raw materials with high concentrations of this carbohydrate. © 2001 Society of Chemical Industry  相似文献   

5.
表达有毕赤酵母木糖还原酶(XR)和木糖醇脱氢酶(XDH)的重组酿酒酵母,能代谢木糖.但是XR和XDH分别偏好辅酶NADPH和NAD+,造成辅酶的不平衡和副产物的积累,所以重组酿酒酵母利用木糖产生乙醇的效率很低.转氢酶可以催化辅酶NADPH和NADH之间的相互转化,因此本实验将黑曲霉的转氢酶基因NNT转入到重组酿酒酵母中,通过实验确定了NNT基因的表达蛋白在酵母细胞内定位于线粒体中,NNT基因分别用pPGK1、pCCW12和pHXT7启动子进行表达,在微好氧的木糖发酵条件下,NNT基因的导入使酿酒酵母甘油产量下降,乙醇产率提高,在由pCCW12和pHXT7表达NNT基因的重组酿酒酵母中,木糖醇产率分别下降86.3%和49.3%,乙醇产率提高16.7%和12.7%,说明转氢酶NNT的存在改善了木糖代谢的辅酶不平衡,提高了乙醇的转化率.  相似文献   

6.
The production and consumption of sorbitol by Saccharomyces cerevisiae ATCC 36859 have been studied in this work. The results showed that the strain produced ethanol and sorbitol in a fructose medium, but it generated only ethanol while growing in a glucose medium. When the strain was pregrown on fructose and transferred to a sorbitol medium, it consumed that polyol and produced ethanol and fructose. It did not grow on sorbitol when it was transferred from a glucose medium. During the growth of the strain in a glucose-fructose medium, the sorbitol production started some time after the consumption of glucose. Both glucose and ethanol affected the production of sorbitol. Comparing the strain with a wild S. cerevisiae, it was found that the latter one did not produce sorbitol when it grew either on glucose or fructose. Furthermore, the wild strain grew well on sorbitol, regardless of whether it was pregrown on glucose or fructose but it did not produce fructose.  相似文献   

7.
以双拷贝过表达木糖代谢上游途径关键酶(木糖还原酶XR、木糖醇脱氢酶XDH和木酮糖激酶XKS)的酿酒酵母菌株为背景,在过表达非氧化磷酸戊糖(PP)途径中转醛酶基因TAL1的基础上,对途径中其他基因TKL1(转酮酶)、RPE1(核酮糖-5-磷酸差向异构酶)和RKI1(核酮糖-5-磷酸异构酶)进行了不同程度的过表达,以研究PP途径基因过表达对酿酒酵母木糖代谢的影响。在不同培养基条件下对重组菌株木糖代谢进行研究,结果显示,在过表达TAL1的基础上不同组合过表达PP途径其他基因不同程度改善了酿酒酵母木糖发酵性能,重组菌株能在36~48 h耗完质量分数(下同)为5%的木糖。其中,过表达PP途径全部基因比其他过表达基因组合表现出明显的优势,在8%木糖发酵条件下其乙醇产量达到了每1 g木糖0.337 g,较对照菌株提高了7.86%。这说明同步过表达PP途径基因更有利于酿酒酵母木糖发酵。  相似文献   

8.
Continuous alcoholic fermentation of untreated crude sugar beet molasses has been studied. The process was carried out in a vertical fluidized-bed reactor with beads of calcium-alginate containing immobilized Saccharomyces cerevisiae. The influence of hydraulic residence time, concentration of substrate and other variables have been studied.  相似文献   

9.
    
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a heritable neurodegenerative disease characterized by rapid respiratory failure within the first months of life and progressive muscle weakness and wasting. Although the causative gene, IGHMBP2, is well defined, information on IGHMBP2 mutations is not always sufficient to diagnose particular patients, as the gene is highly polymorphic and the pathogenicity of many gene variants is unknown. In this study, we generated a simple yeast model to establish the significance of IGHMBP2 variants for disease development, especially those that are missense mutations. We have shown that cDNA of the human gene encodes protein which is functional in yeast cells and different pathogenic mutations affect this functionality. Furthermore, there is a correlation between the phenotype estimated in in vitro studies and our results, indicating that our model may be used to quickly and simply distinguish between pathogenic and non-pathogenic mutations identified in IGHMBP2 in patients.  相似文献   

10.
Saccharomyces cerevisiae ATCC 36859 preferentially consumes glucose from glucose–fructose mixtures. Synthetic media and complex media containing high fructose corn syrup supplemented with Jerusalem artichoke juice were used for the production of pure fructose syrup by the conversion of glucose to ethanol. Fructose was not converted in these processes. Increasing the concentration of Jerusalem artichoke juice increased the yields of ethanol and biomass and decreased the process time. A similar effect was obtained at a low juice concentration when a larger amount of biomass was used for the inoculum. The product from this process contained only fructose and ethanol. Use of food-grade materials results in a pure fructose syrup that is suitable for human consumption.  相似文献   

11.
The influence of ethylenediaminetetra acetic acid (EDTA), potassium ferrocyanide and zeolite X on ethanol production from sugar beet molasses by Saccharomyces cerevisiae was studied. For all of the three substances used, the effect was more pronounced when added to the fermentation medium rather than to the growth medium; 1·9 mmol dm−3 potassium ferrocyanide caused an increase in the final ethanol concentration of about 16·4% and 47·5% with respect to control culture on addition to growth and fermentation media respectively. The greatest stimulation in product yield was obtained with zeolite X introduced during the fermentation stage; 8·0 g dm−3 zeolite X increased ethanol concentration by 53·3%. © 1997 SCI.  相似文献   

12.
    
The mutant Saccharomyces cerevisiae ATCC 36858 was used in the production of ethanol and/or fructose from synthetic media in batch processes with raffinose, melibiose or sucrose. The mutant was able to hydrolyze all the sugars used and to selectively ferment glucose and galactose to ethanol while fructose accumulated in the fermentation medium. The fructose yield was above 89% of the theoretical value in the media with either raffinose or sucrose, when initial concentrations were between 131.5 g dm?3 and 242.0 g dm?3. The ethanol yields were 82% and 77% of the theoretical values in the media with melibiose and sucrose, respectively, and about 72% of the theoretical value when raffinose was used. The fructose fraction in the carbohydrate content of the produced syrups was more than 96% when raffinose concentration was below 189.1 g dm?3. However, even at a sucrose concentration of 187.9 g dm?3, the produced syrup contained 100% fructose. Some oligosaccharides were also produced in all tested media. The produced oligosaccharides were consumed by the end of the fermentation process. These findings can be useful in the production of ethanol and high fructose syrups using raw materials based on sucrose and raffinose such as molasses. Copyright © 2003 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号