首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolutionary potential of populations is mainly determined by population size and available genetic variance. However, the adaptability of spatially structured populations may also be affected by dispersal: positively by spreading beneficial mutations across sub-populations, but negatively by moving locally adapted alleles between demes. We develop an individual-based, two-patch, allelic model to investigate the balance between these opposing effects on a population''s evolutionary response to rapid climate change. Individual fitness is controlled by two polygenic traits coding for local adaptation either to the environment or to climate. Under conditions of selection that favour the evolution of a generalist phenotype (i.e. weak divergent selection between patches) dispersal has an overall positive effect on the persistence of the population. However, when selection favours locally adapted specialists, the beneficial effects of dispersal outweigh the associated increase in maladaptation for a narrow range of parameter space only (intermediate selection strength and low linkage among loci), where the spread of beneficial climate alleles is not strongly hampered by selection against non-specialists. Given that local selection across heterogeneous and fragmented landscapes is common, the complex effect of dispersal that we describe will play an important role in determining the evolutionary dynamics of many species under rapidly changing climate.  相似文献   

2.
There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky–eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail''s body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail''s upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.  相似文献   

3.
In spatially heterogeneous environments, natural selection for maintenance of adaptation to habitats that contribute little to the population's reproduction is weak. In this paper we model a mechanism that can result in loss of fitness in such marginal habitats, and thus lead to specialisation on the main habitat. It involves accumulation of mutations that are deleterious in the marginal habitat but neutral or nearly so in the main habitat (mutations deleterious in the main habitat and neutral in the marginal habitat have a negligible influence). If the contribution of the marginal habitat to total reproduction in the absence of the mutations is less than a threshold value, selection is too weak to counter accumulation of such mutations. A positive feedback then results in loss of fitness in the marginal habitat. This mechanism does not require antagonistic pleiotropy in adaptation to different habitats, although antagonistic pleiotropy facilitates the mutational collapse of fitness in the marginal habitat. We suggest that deleterious mutations with habitat-specific expression may play a role in the evolution of ecological specialisation and promote evolutionary conservatism of ecological niches.  相似文献   

4.
Dispersal is a key component of a species''s ecology and will be under different selection pressures in different parts of the range. For example, a long-distance dispersal strategy suitable for continuous habitat at the range core might not be favoured at the margin, where the habitat is sparse. Using a spatially explicit, individual-based, evolutionary simulation model, the dispersal strategies of an organism that has only one dispersal event in its lifetime, such as a plant or sessile animal, are considered. Within the model, removing habitat, increasing habitat turnover, increasing the cost of dispersal, reducing habitat quality or altering vital rates imposes range limits. In most cases, there is a clear change in the dispersal strategies across the range, although increasing death rate towards the margin has little impact on evolved dispersal strategy across the range. Habitat turnover, reduced birth rate and reduced habitat quality all increase evolved dispersal distances at the margin, while increased cost of dispersal and reduced habitat density lead to lower evolved dispersal distances at the margins. As climate change shifts suitable habitat poleward, species ranges will also start to shift, and it will be the dispersal capabilities of marginal populations, rather than core populations, that will influence the rate of range shifting.  相似文献   

5.
Changing environmental conditions will inevitably alter selection pressures. Over the long term, populations have to adapt to these altered conditions by evolutionary change to avoid extinction. Quantifying the ‘evolutionary potential’ of populations to predict whether they will be able to adapt fast enough to forecasted changes is crucial to fully assess the threat for biodiversity posed by climate change. Technological advances in sequencing and high‐throughput genotyping have now made genomic studies possible in a wide range of species. Such studies, in theory, allow an unprecedented understanding of the genomics of ecologically relevant traits and thereby a detailed assessment of the population's evolutionary potential. Aimed at a wider audience than only evolutionary geneticists, this paper gives an overview of how gene‐mapping studies have contributed to our understanding and prediction of evolutionary adaptations to climate change, identifies potential reasons why their contribution to understanding adaptation to climate change may remain limited, and highlights approaches to study and predict climate change adaptation that may be more promising, at least in the medium term.  相似文献   

6.
In harsh environments, sessile organisms can make their habitat more hospitable by buffering environmental stress or increasing resource availability. Although the ecological significance of such local facilitation is widely established, the evolutionary aspects have been seldom investigated. Yet addressing the evolutionary aspects of local facilitation is important because theoretical studies show that systems with such positive interactions can exhibit alternative stable states and that such systems may suddenly become extinct when they evolve (evolutionary suicide). Arid ecosystems currently experience strong changes in climate and human pressures, but little is known about the effects of these changes on the selective pressures exerted on the vegetation. Here, we focus on the evolution of local facilitation in arid ecosystems, using a lattice-structured model explicitly considering local interactions among plants. We found that the evolution of local facilitation depends on the seed dispersal strategy. In systems characterized by short-distance seed dispersal, adaptation to a more stressful environment leads to high local facilitation, allowing the population to escape extinction. In contrast, systems characterized by long-distance seed dispersal become extinct under increased stress even when allowed to adapt. In this case, adaptation in response to climate change and human pressures could give the final push to the desertification of arid ecosystems.  相似文献   

7.
Population genetics struggles to model extinction; standard models track the relative rather than absolute fitness of genotypes, while the exceptions describe only the short‐term transition from imminent doom to evolutionary rescue. But extinction can result from failure to adapt not only to catastrophes, but also to a backlog of environmental challenges. We model long‐term adaptation to long series of small challenges, where fitter populations reach higher population sizes. The population's long‐term fitness dynamic is well approximated by a simple stochastic Markov chain model. Long‐term persistence occurs when the rate of adaptation exceeds the rate of environmental deterioration for some genotypes. Long‐term persistence times are consistent with typical fossil species persistence times of several million years. Immediately preceding extinction, fitness declines rapidly, appearing as though a catastrophe disrupted a stably established population, even though gradual evolutionary processes are responsible. New populations go through an establishment phase where, despite being demographically viable, their extinction risk is elevated. Should the population survive long enough, extinction risk later becomes constant over time.  相似文献   

8.
Habitat loss and climate change are key drivers of global biodiversity declines but their relative importance has rarely been examined. We attempted to attribute spatially divergent population trends of two Afro-Palaearctic migrant warbler species, Willow Warbler Phylloscopus trochilus and Common Chiffchaff Phylloscopus collybita, to changes in breeding grounds climate or habitat. We used bird counts from over 4000 sites across the UK between 1994 and 2017, monitored as part of the BTO/JNCC/RSPB Breeding Bird Survey. We modelled Willow Warbler and Common Chiffchaff population size and growth in relation to habitat, climate and weather. We then used the abundance model coefficients and observed environmental changes to determine the extent to which spatially varying population trends in England and Scotland were consistent with attribution to climate and habitat changes. Both species' population size and growth correlated with habitat, climate and weather on their breeding grounds. Changes in habitat, in particular woodland expansion, could be linked to small population increases for both species in England and Scotland. Both species' populations correlated more strongly with climate than weather, and both had an optimum breeding season temperature: 11°C for Willow Warbler and around 13.5°C for Common Chiffchaff (with marginally different predictions from population size and growth models). Breeding ground temperature increases, therefore, had the potential to have caused some of the observed Willow Warbler declines in England (where the mean breeding season temperature was 12.7°C) and increases in Scotland (mean breeding season temperature was 10.2°C), and some of the differential rates of increase for Common Chiffchaff. However, much of the variation in species' population abundance and trends were not well predicted by our models and could be due to other factors, such as species interactions, habitat and climate change in their wintering grounds and on migration. This study provides evidence that the effect of climate change on a species may vary spatially and may switch from being beneficial to being detrimental if a temperature threshold is exceeded.  相似文献   

9.
Changes in the seasonal timing of life history events are documented effects of climate change. We used a general model to study how dispersal and competitive interactions affect eco-evolutionary responses to changes in the temporal distribution of resources over the season. Specifically, we modeled adaptation of the timing of reproduction and population dynamic responses in two competing populations that disperse between two habitats characterized by an early and late resource peak. We investigated three scenarios of environmental change: (1) food peaks advance in both habitats, (2) in the late habitat only and (3) in the early habitat only. At low dispersal rates the evolutionarily stable timing of reproduction closely matched the local resource peak and the environmental change typically caused population decline. Larger dispersal rates rendered less intuitive eco-evolutionary population responses. First, dispersal caused mismatch between evolutionarily stable timing of reproduction and local resource peaks and as a result, reproductive output for subpopulations could increase as well as decrease when resource availability underwent temporal shifts. Second, population responses were contingent on competition between populations. This could accelerate population declines and cause extinctions or even reverse population trends from negative to positive compared to the low dispersal case. When dispersal rate was large and the early resource peak was advanced available niche space was reduced. Hence, even when a population survived the environmental change and obtained positive equilibrium population density, subsequent adaptation of competing populations could drive it to extinction due to convergent evolution and competitive exclusion. These results shed new light on the role of competition and dispersal for the evolution of timing of life history events and provide guidelines for understanding short and long-term population response to climate change.  相似文献   

10.
Genetic structuring of wild populations is dependent on environmental, ecological, and life‐history factors. The specific role environmental context plays in genetic structuring is important to conservation practitioners working with rare species across areas with varying degrees of fragmentation. We investigated fine‐scale genetic patterns of the federally threatened Eastern Massasauga Rattlesnake (Sistrurus catenatus) on a relatively undisturbed island in northern Michigan, USA. This species often persists in habitat islands throughout much of its distribution due to extensive habitat loss and distance‐limited dispersal. We found that the entire island population exhibited weak genetic structuring with spatially segregated variation in effective migration and genetic diversity. The low level of genetic structuring contrasts with previous studies in the southern part of the species’ range at comparable fine scales (~7 km), in which much higher levels of structuring were documented. The island population''s genetic structuring more closely resembles that of populations from Ontario, Canada, that occupy similarly intact habitats. Intrapopulation variation in effective migration and genetic diversity likely corresponds to the presence of large inland lakes acting as barriers and more human activity in the southern portion of the island. The observed genetic structuring in this intact landscape suggests that the Eastern Massasauga is capable of sufficient interpatch movements to reduce overall genetic structuring and colonize new habitats. Landscape mosaics with multiple habitat patches and localized barriers (e.g., large water bodies or roads) will promote gene flow and natural colonization for this declining species.  相似文献   

11.
The climate change risk to biodiversity operates alongside a range of anthropogenic pressures. These include habitat loss and fragmentation, which may prevent species from migrating between isolated habitat patches in order to track their suitable climate space. Predictive modelling has advanced in scope and complexity to integrate: (i) projected shifts in climate suitability, with (ii) spatial patterns of landscape habitat quality and rates of dispersal. This improved ecological realism is suited to data-rich model species, though its broader generalisation comes with accumulated uncertainties, e.g. incomplete knowledge of species response to variable habitat quality, parameterisation of dispersal kernels etc. This study adopts ancient woodland indicator species (lichen epiphytes) as a guild that couples relative simplicity with biological rigour. Subjectively-assigned indicator species were statistically tested against a binary habitat map of woodlands of known continuity (>250 yr), and bioclimatic models were used to demonstrate trends in their increased/decreased environmental suitability under conditions of ‘no dispersal’. Given the expectation of rapid climate change on ecological time-scales, no dispersal for ancient woodland indicators becomes a plausible assumption. The risk to ancient woodland indicators is spatially structured (greater in a relative continental compared to an oceanic climatic zone), though regional differences are weakened by significant variation (within regions) in woodland extent. As a corollary, ancient woodland indicators that are sensitive to projected climate change scenarios may be excellent targets for monitoring climate change impacts for biodiversity at a site-scale, including the outcome of strategic habitat management (climate change adaptation) designed to offset risk for dispersal-limited species.  相似文献   

12.
13.
Conceptual issues in local adaptation   总被引:10,自引:0,他引:10  
Studies of local adaptation provide important insights into the power of natural selection relative to gene flow and other evolutionary forces. They are a paradigm for testing evolutionary hypotheses about traits favoured by particular environmental factors. This paper is an attempt to summarize the conceptual framework for local adaptation studies. We first review theoretical work relevant for local adaptation. Then we discuss reciprocal transplant and common garden experiments designed to detect local adaptation in the pattern of deme × habitat interaction for fitness. Finally, we review research questions and approaches to studying the processes of local adaptation – divergent natural selection, dispersal and gene flow, and other processes affecting adaptive differentiation of local demes. We advocate multifaceted approaches to the study of local adaptation, and stress the need for experiments explicitly addressing hypotheses about the role of particular ecological and genetic factors that promote or hinder local adaptation. Experimental evolution of replicated populations in controlled spatially heterogeneous environments allow direct tests of such hypotheses, and thus would be a valuable way to complement research on natural populations.  相似文献   

14.
Evolution and ecological diversification in a heterogeneous environment is driven by an often complex interplay between local adaptation and dispersal between different habitat types. Heterogeneous environments also easily generate source-sink dynamics of populations coupled by dispersal. It follows that local adaptation and possible adaptive radiation almost by necessity involves adaptation to a (pseudo-)sink habitat, which is considered unlikely. We here study a model of ‘parapatric branching’ with this special focus on the spatial ecology of the process. We find that evolutionary branching can display a sequence of alternating adaptations to the source or the sink. In some circumstances a true sink can become a pseudo-sink through adaptation to the corresponding source habitat. The evolutionary endpoint is a spatially structured community consisting of two source populations with one corresponding sink or pseudo-sink each. Our results shed new light on the interpretation of extant source-sink systems and the process of parapatric branching.  相似文献   

15.
The analysis of animal movement within different landscapes may increase our understanding of how landscape features affect the perceptual range of animals. Perceptual range is linked to movement probability of an animal via a dispersal kernel, the latter being generally considered as spatially invariant but could be spatially affected. We hypothesize that spatial plasticity of an animal''s dispersal kernel could greatly modify its distribution in time and space. After radio tracking the movements of walking insects (Cosmopolites sordidus) in banana plantations, we considered the movements of individuals as states of a Markov chain whose transition probabilities depended on the habitat characteristics of current and target locations. Combining a likelihood procedure and pattern-oriented modelling, we tested the hypothesis that dispersal kernel depended on habitat features. Our results were consistent with the concept that animal dispersal kernel depends on habitat features. Recognizing the plasticity of animal movement probabilities will provide insight into landscape-level ecological processes.  相似文献   

16.
Many organisms show polymorphism in dispersal distance strategies. This variation is particularly ecological relevant if it encompasses a functional separation of short‐ (SDD) and long‐distance dispersal (LDD). It remains, however, an open question whether both parts of the dispersal kernel are similarly affected by landscape related selection pressures. We implemented an individual‐based model to analyze the evolution of dispersal traits in fractal landscapes that vary in the proportion of habitat and its spatial configuration. Individuals are parthenogenetic with dispersal distance determined by two alleles on each individual's genome: one allele coding for the probability of global dispersal and one allele coding for the variance σ of a Gaussian local dispersal with mean value zero. Simulations show that mean distances of local dispersal and the probability of global dispersal, increase with increasing habitat availability, but that changes in the habitat's spatial autocorrelation impose opposing selective pressure: local dispersal distances decrease and global dispersal probabilities increase with decreasing spatial autocorrelation of the available habitat. Local adaptation of local dispersal distance emerges in landscapes with less than 70% of clumped habitat. These results demonstrate that long and short distance dispersal evolve separately according to different properties of the landscape. The landscape structure may consequently largely affect the evolution of dispersal distance strategies and the level of dispersal polymorphism.  相似文献   

17.
Both dispersal and local demographic processes determine a population's distribution among habitats of varying quality, yet most theory, experiments, and field studies have focused on the former. We use a generic model to show how both processes contribute to a population's distribution, and how the relative importance of each mechanism depends on scale. In contrast to studies only considering habitat‐dependent dispersal, we show that predictions of ideal free distribution (IFD) theory are relevant even at landscape scales, where the assumptions of IFD theory are violated. This is because scales that inhibit one process, promote the other's ability to drive populations to the IFD. Furthermore, because multiple processes can generate IFDs, the pattern alone does not specify a causal mechanism. This is important because populations with IFDs generated by dispersal or demography respond much differently to shifts in resource distributions.  相似文献   

18.
Despite the wide usage of the term information in evolutionary ecology, there is no general treatise between fitness (i.e. density‐dependent population growth) and selection of the environment sensu lato. Here we 1) initiate the building of a quantitative framework with which to examine the relationship between information use in spatially heterogeneous landscapes and density‐dependent population growth, and 2) illustrate its utility by applying the framework to an existing model of breeding habitat selection. We begin by linking information, as a process of narrowing choice, to population growth/fitness. Second, we define a measure of a population's penalty of ignorance based on the Kullback–Leibler index that combines the contributions of resource selection (i.e. biased use of breeding sites) and density‐dependent depletion. Third, we quantify the extent to which environmental heterogeneity (i.e. mean and variance within a landscape) constrains sustainable population growth of unbiased agents. We call this the heterogeneity‐based fitness deficit, and combine this with population simulations to quantify the independent contribution of information‐use strategies to the total population growth rate. We further capitalize on this example to highlight the interactive effects of information between ecological scales when fear affects individual fitness through phenotypic plasticity. Informed breeding habitat selection moderates the demographic cost of fear commensurate with density‐dependent information use. Thus, future work should attempt to differentiate between phenotypic plasticity (i.e. acute fear) and demographic responses (i.e. chronic changes in population size). We conclude with a broader discussion of information in alternative contexts, and explore some evolutionary considerations for information use. We note how competition among individuals may constrain the information state among individuals, and the implications of this constraint under environmental change.  相似文献   

19.
A factor that may limit the ability of many populations to adapt to changing conditions is the rate at which beneficial mutations can become established. We study the probability that mutations become established in changing environments by extending the classic theory for branching processes. When environments change in time, under quite general conditions, the establishment probability is approximately twice the ‘effective selection coefficient’, whose value is an average that gives most weight to a mutant''s fitness in the generations immediately after it appears. When fitness varies along a gradient in a continuous habitat, increased dispersal generally decreases the chance a mutation establishes because mutations move out of areas where they are most adapted. When there is a patch of favourable habitat that moves in time, there is a maximum speed of movement above which mutations cannot become established, regardless of when and where they first appear. This critical speed limit, which is proportional to the mutation''s maximum selective advantage, represents an absolute constraint on the potential of locally adapted mutations to contribute to evolutionary rescue.  相似文献   

20.
BioMove simulates plant species' geographic range shifts in response to climate, habitat structure and disturbance, at annual time steps. This spatially explicit approach integrates species' bioclimatic suitability and population‐level demographic rates with simulation of landscape‐level processes (dispersal, disturbance, species' response to dynamic dominant vegetation structure). Species population dynamics are simulated through matrix modelling that includes scaling demographic rates by climatic suitability. Dispersal functions simulate population spread. User‐specified plant functional types (PFTs) provide vegetation structure that determines resource competition and disturbance. PFTs respond annually through dispersal, inter‐PFT competition and demographic shifts. BioMove provides a rich framework for dynamic range simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号