首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A new multilevel coding method using error-correcting codes   总被引:15,自引:0,他引:15  
A new multilevel coding method that uses several error-correcting codes is proposed. The transmission symbols are constructed by combining symbols of codewords of these codes. Usually, these codes are binary error-correcting codes and have different error-correcting capabilities. For various channels, efficient systems can be obtained by choosing these codes appropriately. Encoding and decoding procedures for this method are relatively simple compared with those of other multilevel coding methods. In addition, this method makes effective use of soft-decisions to improve the performance of decoding. The decoding error probability is analyzed for multiphase modulation, and numerical comparisons to other multilevel coding systems are made. When equally complex systems are compared, the new system is superior to other multilevel coding systems.  相似文献   

2.
A coding scheme based on the properties of rank vectors is presented. The new codes are based on the theory of permutation groups by introducing a new notation for the group operation that simplifies the generation and decoding of desirable rank codes. The use of group theory is made possible by the introduction of the Kendall correlation coefficient as a measure of the distance between code words. This technique provides a method for the choice of rank vector code words superior to those that have been proposed in the past. Much of the terminology used in block coding can also be used to describe rank vector codes, but the actual quantities involved are quite different. The rank vector codes discussed in the paper offer the advantage of low sensitivity of the probability of error to the noise distribution because of the nonparametric character of rank vector detection schemes. Bounds that have been verified by extensive computer simulation have been derived for the probability of error.  相似文献   

3.
骆亚娟  张伟  鞠德航 《电子学报》2000,28(1):142-144
由Imai与Hirakawa提出的多级编码方法,可用来构造具有任意大最小平方欧氏距离的分组调制(BCM)码.一个BCM码的性能主要取决于构成它的各个成分码,恰当地选择成分码是构造一个好的BCM码的关键.文章给出了一种新方法,通过选用不同长度的成分码来构造BCM码.仿真结果表明用此方法构造出的BCM码较传统的BCM码在性能与复杂度上有明显的改善.  相似文献   

4.
Approximately universal codes over slow-fading channels   总被引:2,自引:0,他引:2  
Performance of reliable communication over a coherent slow-fading multiple-input multiple-output (MIMO) channel at high signal-to-noise ratio (SNR) is succinctly captured as a fundamental tradeoff between diversity and multiplexing gains. This paper studies the problem of designing codes that optimally tradeoff the diversity and multiplexing gains. The main contribution is a precise characterization of codes that are universally tradeoff-optimal, i.e., they optimally tradeoff the diversity and multiplexing gains for every statistical characterization of the fading channel. This characterization is referred to as approximate universality; the approximation is in the connection between error probability and outage capacity with diversity and multiplexing gains, respectively. The characterization of approximate universality is then used to construct new coding schemes as well as to show optimality of several schemes proposed in the space-time coding literature.  相似文献   

5.
Universal noiseless coding   总被引:2,自引:0,他引:2  
Universal coding is any asymptotically optimum method of block-to-block memoryless source coding for sources with unknown parameters. This paper considers noiseless coding for such sources, primarily in terms of variable-length coding, with performance measured as a function of the coding redundancy relative to the per-letter conditional source entropy given the unknown parameter. It is found that universal (i.e., zero redundancy) coding in a weighted sense is possible if and only if the per-letter average mutual information between the parameter space and the message space is zero. Universal coding is possible in a maximin sense if and only if the channel capacity between the two spaces is zero. Universal coding is possible in a minimax sense if and only if a probability mass function exists, independent of the unknown parameter, for which the relative entropy of the known conditional-probability mass-function is zero. Several examples are given to illustrate the ideas. Particular attention is given to sources that are stationary and ergodic for any fixed parameter although the whole ensemble is not. For such sources, weighted universal codes always exist if the alphabet is finite, or more generally if the entropy is finite. Minimax universal codes result if an additional entropy stability constraint is applied. A discussion of fixed-rate universal coding is also given briefly with performance measured by a probability of error.  相似文献   

6.
A parallel concatenated coding scheme consists of two simple constituent systematic encoders linked by an interleaver. The input bits to the first encoder are scrambled by the interleaver before entering the second encoder. The codeword of the parallel concatenated code consists of the input bits to the first encoder followed by the parity check bits of both encoders. This construction can be generalized to any number of constituent codes. Parallel concatenated schemes employing two convolutional codes as constituent codes, in connection with an iterative decoding algorithm of complexity comparable to that of the constituent codes, have been previously shown to yield remarkable coding gains close to theoretical limits. They have been named, and are known as, “turbo codes”. We propose a method to evaluate an upper bound to the bit error probability of a parallel concatenated coding scheme averaged over all interleavers of a given length. The analytical bounding technique is then used to shed some light on some crucial questions, which have been floating around in the communications community since the proposal of turbo codes  相似文献   

7.
Polar coding is a code construction method that can be used to construct capacity-achieving codes for binary-input channels with certain symmetries. Polar coding may be considered as a generalization of Reed-Muller (RM) coding. Here, we demonstrate the performance advantages of polar codes over RM codes under belief-propagation decoding.  相似文献   

8.
基于多重置换阵的满秩结构化LDPC码构造方法   总被引:1,自引:0,他引:1       下载免费PDF全文
陈智雄  苑津莎 《电子学报》2012,40(2):313-318
 在多重置换阵的基础上,提出一种适用基于网络编码的协作中继策略的结构化LDPC码构造方法.首先定义了多重置换阵的概念,提出并证明了该方阵在秩和消元等方面的重要性质;给出具体的构造步骤,构造了列重为3和围长至少为6的满秩LDPC码;分析了该LDPC码的生成矩阵,具有稀疏和结构化的特点,适用基于网络编码的协作中继系统中进行联合网络编码和迭代译码.仿真结果表明,在相同码长、2/3码率和准循环矩阵 Y 结构条件下,相比阵列LDPC码、近似双对角形式的LDPC码和三对角形式的LDPC码,新构造的LDPC码具有相对较好的译码性能.  相似文献   

9.
Combined turbo codes and interleaver design   总被引:1,自引:0,他引:1  
The impact of the distance spectrum and interleaver structure on the bit error probability of turbo codes is considered. A new turbo code design method for Gaussian channels is presented. The proposed method combines a search for good component codes with interleaver design. The optimal distance spectrum is used as the design criterion to construct good turbo component codes at low signal-to-noise ratios (SNRs). In addition, an interleaver design method is proposed. This design improves the code performance at high SNR. Search for good component codes at low SNR is combined with a code matched interleaver design. This results in new turbo codes with a superior error performance relative to the best known codes at both low and high SNR. The performance is verified by both analysis and simulation  相似文献   

10.
本文通过分析LTE-Advanced系统中准循环LDPC码校验矩阵的构造方法,在不改变母码矩阵的基础上,采用一种灵活的扩展方法,构造了一种低码率的LDPC码。采用一种很实用的编码算法和差分译码算法,在MATLAB仿真平台下,比较了这种LDPC码和Turbo码的性能。结果表明:在短码情况下,这种LDPC码在低信噪比下性能略低于Turbo码,但随着信噪比的增加,LDPC码性能优于Turbo码;在长码情况下,LDPC码的性能明显优于Turbo码。为LTE-Advanced系统的信道编解码器的硬件设计提供了一套有效的编译码算法方案,具有较好的实用价值。  相似文献   

11.
This paper investigates the use of space-time (ST) coding for high-speed data transmission, as well as studies the effect of time delay spread on such scheme over unequalized fading channels. Using a random variable decomposition technique, we present an analytical model and obtain an approximate bound of the pairwise-error probability for ST coded systems over multipath and time-dispersive fading channels. It is shown that the presence of multipath does not reduce the diversity gain provided by the original design criteria, which is adopted to construct specific ST codes in quasi-static flat fading, but the coding gain diminishes due to the effect of multipath fading.  相似文献   

12.
Many coded modulation constructions, such as lattice codes, are visualized as restricted subsets of an infinite constellation (IC) of points in the n-dimensional Euclidean space. The author regards an IC as a code without restrictions employed for the AWGN channel. For an IC the concept of coding rate is meaningless and the author uses, instead of coding rate, the normalized logarithmic density (NLD). The maximum value C such that, for any NLD less than C, it is possible to construct an PC with arbitrarily small decoding error probability, is called the generalized capacity of the AWGN channel without restrictions. The author derives exponential upper and lower bounds for the decoding error probability of an IC, expressed in terms of the NLD. The upper bound is obtained by means of a random coding method and it is very similar to the usual random coding bound for the AWGN channel. The exponents of these upper and lower bounds coincide for high values of the NLD, thereby enabling derivation of the generalized capacity of the AWGN channel without restrictions. It is also shown that the exponent of the random coding bound can be attained by linear ICs (lattices), implying that lattices play the same role with respect to the AWGN channel as linear-codes do with respect to a discrete symmetric channel  相似文献   

13.
Hermitian codes are an attractive alternative to Reed-Solomon codes for use in frequency-hop spread-spectrum packet radio networks. For a given alphabet size, a Hermitian code has a much longer block length than a Reed-Solomon code. This and other considerations suggest that Hermitian codes may be superior for certain applications. Analytical results are developed for the evaluation of the packet error probability for frequency-hop transmissions using Hermitian coding. We find there are several situations for which Hermitian codes provide much lower packet error probabilities than can be obtained with Reed-Solomon codes. In general, as the code rate decreases or the symbol alphabet size increases, the relative performance of Hermitian codes improves with respect to Reed-Solomon codes. Performance evaluations are presented for an additive white Gaussian noise channel and for certain partial-band interference channels, and the packet error probability is evaluated for both errors-only and errors-and-erasures decoding.  相似文献   

14.
A primer on turbo code concepts   总被引:6,自引:0,他引:6  
The goal of this article is to describe the main ideas behind the new class of codes called turbo codes, whose performance in terms of bit error probability has been shown to be very close to the Shannon limit. In this article, the mathematical measures of a posteriori probability and likelihood are reviewed, and the benefits of turbo codes are explained in this context. Since the algorithms needed to implement the decoders have been well documented by others, they are only referenced here, not described in detail. A numerical example, using a simple concatenated coding scheme, provides a vehicle for illustrating how error performance can be improved when soft outputs from the decoders are used in an iterative decoding process  相似文献   

15.
This paper addresses network coding in wireless networks in conjunction with medium access control (MAC). It is known that coding over wired networks enables connections with rates that cannot be achieved by routing. However, the properties of wireless networks (e.g., omnidirectional transmissions, destructive interference, single transceiver per node, finite energy) modify the formulation of time-varying network coding in a way that reflects strong interactions with underlying MAC protocols and deviates from the classical approach used in wired network coding. To perform network coding over conflict-free transmission schedules, predetermined network realizations are separately activated by a time-division mechanism and the content of network flows is derived through network coding to optimize performance measures such as achievable throughput and energy costs. A systematic method is presented to construct linear wireless network codes and interactions with MAC schedules are discussed under wireless assumptions. Network coding is also extended to operate with arbitrary (random or scheduled access based) MAC protocols. Alternatively, conflict-free transmission schedules are jointly constructed with network codes by decomposing wireless networks into subtrees and employing graph coloring on simplified subtree graphs. Finally, network coding and plain routing are compared in terms of throughput, energy and delay performance under different MAC solutions.  相似文献   

16.
The performance of cross-coupled,M-ary quadrature amplitude modulation (QAM) systems is determined when bandwidth efficient trellis codes are used to combat interference. Performance with and without compensation for cross-coupled interference is presented. It is found that simple trellis codes can maintain the error probability at an acceptable level for cross-coupling parameters that render uncoded systems unusable. Up to two-dimensional trellis codes are considered for four-dimensional QAM signals, and possibilities of obtaining diversity advantages in the form of higher total system throughput by prolonged availability of the two signals are explored. This is accomplished through joint coding over two different constellations. The probability of the most likely error events is calculated by using the method of moments. The results are applicable to any digital communication system using multidimensional quadrature amplitude modulation, e.g., voiceband modems, cross-polarized radio systems and, to some extent, optical systems. In the paper the analysis is restricted to nondispersive cross-coupling models. In most cases the coding gain is larger than in the absence of cross-coupling interference. Specifically, it is found that simple codes have coding gains increased by at least 2 dB with cross-coupling interference relative to that obtained on the additive white Gaussian noise channel.  相似文献   

17.
Two-user tree codes are considered for use on an arbitrary two-user discrete memoryless multiple-access channel (MAC). A two-user tree Is employed to achieve true maximum likelihood (ML) decoding of two-user tree codes on MAC's. Each decoding error event has associated with it a configuration indicating the specific time slots in which a decoding error has occurred for the first user alone, for the second user alone, or for both users simultaneously. Even though there are many possible configurations, it is shown that there are five fundamental configuration types. An upper bound on decoding error probability, similar to Liao's result for two-user block codes, is derived for sets of error events having a particular configuration. The total ML decoding error probability is bounded using a union bound first over all configurations of a given type and then over the five configuration types. A two-user tree coding error exponent is defined and compared with the corresponding block coding result for a specific MAC. It is seen that the tree coding error exponent is larger than the block coding error exponent at all rate pairs within the two-user capacity region. Finally, a new lower bound on free distance for two-user codes is derived using the same general technique used to bound the error probability.  相似文献   

18.
A formula for the probability of error in a digital system subjected to noise and intersymbol interference is derived. The transmitted symbols are encoded by forming the weighted sum of theMmost recent, independent, multilevel source digits. This linear coding operation in cludes, as a special case, the family of partial response codes.  相似文献   

19.
We define and estimate the threshold probability &thetas; of a linear code, using a theorem of Margulis (1974) originally conceived for the study of the probability of disconnecting a graph. We then apply this concept to the study of the erasure and Z-channels, for which we propose linear coding schemes that admit simple decoding. We show that &thetas; is particularly relevant to the erasure channel since linear codes achieve a vanishing error probability as long as p⩽&thetas;, where p is the probability of erasure. In effect, &thetas; can be thought of as a capacity notion designed for codes rather than for channels. Binomial codes haven the highest possible &thetas; (and achieve capacity). As for the Z-channel, a subcapacity is derived with respect to the linear coding scheme. For a transition probability in the range ]log (3/2); 1[, we show how to achieve this subcapacity. As a by-product we obtain improved constructions and existential results for intersecting codes (linear Sperner families) which are used in our coding schemes  相似文献   

20.
Linear codes for a coding problem of correlated sources are considered. It is proved that we can construct codes by using low-density parity-check (LDPC) matrices with maximum-likelihood (or typical set) decoding. As applications of the above coding problem, a construction of codes is presented for multiple-access channel with correlated additive noises and a coding theorem of parity-check codes for general channels is proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号