首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Recent petrological studies on high‐pressure (HP)–ultrahigh‐pressure (UHP) metamorphic rocks in the Moldanubian Zone, mainly utilizing compositional zoning and solid phase inclusions in garnet from a variety of lithologies, have established a prograde history involving subduction and subsequent granulite facies metamorphism during the Variscan Orogeny. Two temporally separate metamorphic events are developed rather than a single P–T loop for the HP–UHP metamorphism and amphibolite–granulite facies overprint in the Moldanubian Zone. Here further evidence is presented that the granulite facies metamorphism occurred after the HP–UHP rocks had been exhumed to different levels of the middle or upper crust. A medium‐temperature eclogite that is part of a series of tectonic blocks and lenses within migmatites contains a well‐preserved eclogite facies assemblage with omphacite and prograde zoned garnet. Omphacite is partly replaced by a symplectite of diopside + plagioclase + amphibole. Garnet and omphacite equilibria and pseudosection calculations indicate that the HP metamorphism occurred at relatively low temperature conditions of ~600 °C at 2.0–2.2 GPa. The striking feature of the rocks is the presence of garnet porphyroblasts with veins filled by a granulite facies assemblage of olivine, spinel and Ca‐rich plagioclase. These minerals occur as a symplectite forming symmetric zones, a central zone rich in olivine that is separated from the host garnet by two marginal zones consisting of plagioclase with small amounts of spinel. Mineral textures in the veins show that they were first filled mostly by calcic amphibole, which was later transformed into granulite facies assemblages. The olivine‐spinel equilibria and pseudosection calculations indicate temperatures of ~850–900 °C at pressure below 0.7 GPa. The preservation of eclogite facies assemblages implies that the granulite facies overprint was a short‐lived process. The new results point to a geodynamic model where HP–UHP rocks are exhumed to amphibolite facies conditions with subsequent granulite facies heating by mantle‐derived magma in the middle and upper crust.  相似文献   

2.
The Shirokaya Salma eclogite‐bearing complex is located in the Archean–Palaeoproterozoic Belomorian Province (Russia). Its eclogites and eclogitic rocks show multiple clinopyroxene breakdown textures, characterized by quartz–amphibole, orthopyroxene and plagioclase lamellae. Representative samples, a fresh eclogite, two partly retrograded eclogites, and a strongly retrograded eclogitic rock, were collected for this study. Two distinct mineral assemblages—(1) omphacite+garnet+quartz+rutile±amphibole and (2) clinopyroxene+garnet+amphibole+plagioclase+quartz+rutile+ilmenite±orthopyroxene—are described. Based on phase equilibria modelling, these assemblages correspond to the eclogite and granulite facies metamorphism that occurred at 16–18 kbar, 750–800°C and 11–15 kbar, 820–850°C, respectively. The quartz–amphibole lamellae in clinopyroxene formed during retrogression with water ingress, but do not imply UHP metamorphism. The superfine orthopyroxene lamellae developed due to breakdown of an antecedent clinopyroxene (omphacite) during retrogression that was triggered by decompression from the peak of metamorphism, while the coarser orthopyroxene grains and rods formed afterwards. The P–T path reconstructed for the Shirokaya Salma eclogites is comparable to that of the adjacent 1.9 Ga Uzkaya Salma eclogite (Belomorian Province), and those of several other Palaeoproterozoic high‐grade metamorphic terranes worldwide, facts allowing us to debate the exact timing of eclogite facies metamorphism in the Belomorian Province.  相似文献   

3.
A re‐evaluation of the PT history of eclogite within the East Athabasca granulite terrane of the Snowbird tectonic zone, northern Saskatchewan, Canada was undertaken. Using calculated pseudosections in combination with new garnet–clinopyroxene and zircon and rutile trace element thermometry, peak metamorphic conditions are constrained to ~16 kbar and 750 °C, followed by near‐isothermal decompression to ~10 kbar. Associated with the eclogite are two types of occurrences of sapphirine‐bearing rocks preserving a rich variety of reaction textures that allow examination of the retrograde history below 10 kbar. The first occurs as a 1–2 m zone adjacent to the eclogite body with a peak assemblage of garnet–kyanite–quartz interpreted to have formed during the eclogite facies metamorphism. Rims of orthopyroxene and plagioclase developed around garnet, and sapphirine–plagioclase and spinel–plagioclase symplectites developed around kyanite. The second variety of sapphirine‐bearing rocks occurs in kyanite veins within the eclogite. The veins involve orthopyroxene, garnet and plagioclase layers spatially organized around a central kyanite layer that are interpreted to have formed following the eclogite facies metamorphism. The layering has itself been modified, with, in particular, kyanite being replaced by sapphirine–plagioclase, spinel–plagioclase and corundum–plagioclase symplectites, as well as the kyanite being replaced by sillimanite. Petrological modelling in the CFMAS system examining chemical potential gradients between kyanite and surrounding quartz indicates that these vein textures probably formed during further essentially isothermal decompression, ultimately reaching ~7 kbar and 750 °C. These results indicate that the final reaction in these rocks occurred at mid‐crustal levels at upper amphibolite facies conditions. Previous geochronological and thermochronological constraints bracket the time interval of decompression to <5–10 Myr, indicating that ~25 km of exhumation took place during this interval. This corresponds to minimum unroofing rates of ~2–5 mm year?1 following eclogite facies metamorphism, after which the rocks resided at mid‐crustal levels for 80–100 Myr.  相似文献   

4.
柴北缘都兰高压麻粒岩的锆石U-Pb定年及其地质意义   总被引:3,自引:0,他引:3  
在柴北缘高压-超高压变质带的东端都兰地区,高压麻粒岩以透镜体的形式存在于石榴白云母片岩、花岗质片麻岩以及斜长角闪岩中。高压麻粒岩的主体为基性麻粒岩,并含少量中酸性麻粒岩。基性麻粒岩主要由石榴子石、单斜辉石、斜长石和石英等组成,而中酸性麻粒岩峰期矿物组合为:石榴子石+斜长石+钾长石+蓝晶石+石英±单斜辉石。根据显微构造和反应结构特征,主要识别出3期变质作用:①峰期高压麻粒岩相阶段(M1);②退变质高角闪岩相阶段(M2);③绿片岩相/低角闪岩相阶段(M3)。选取典型的中酸性麻粒岩样品进行了锆石LA-ICP-MSU-Pb原位定年分析,获得加权平均年龄为446.9±6.5Ma,且CL图像显示锆石内部发育石榴子石、单斜辉石、斜长石等矿物包体,反映锆石可能形成在峰期高压麻粒岩相变质条件下。岩石学和年代学结果显示都兰高压麻粒岩和邻近的榴辉岩同时形成于同一俯冲带的不同热构造环境,高压麻粒岩并非榴辉岩热松弛作用形成的,两者具有各自独立的变质演化历史。  相似文献   

5.
The Mesoarchaean Tasiusarsuaq terrane of southern West Greenland consists of Tonalite–trondhjemite–granodiorite gneisses and, locally, polymetamorphic mafic and ultramafic rocks. The terrane experienced medium‐pressure granulite facies conditions during M1A in the Neoarchean, resulting in the development of two‐pyroxene melanosome assemblages in mafic granulites containing garnet‐bearing leucosome. Reworking of these rocks during retrogression introduced garnet to the melanosome in the form of overgrowths, coronas and grain necklaces that separate the mafic minerals from plagioclase. NCFMASHTO pseudosection modelling constrains the peak metamorphism during M1A to ~850 °C and 7.5 kbar at fluid‐saturated conditions. Following M1A, the rocks retained their M1A H2O content and became fluid‐undersaturated as they underwent near‐isobaric cooling to ~700 °C and 6.5–7 kbar, prior to reworking during M1B. These low H2O contents allowed for the formation of garnet overgrowths and coronas during M1B. The stability of garnet is greatly increased to lower pressure and temperature in fluid‐absent, fluid‐undersaturated mafic rocks, indicating that fluid and melt loss during initial granulite facies metamorphism is essential for the introduction of garnet, and the formation of garnet coronas, during retrogression. The occurrence of garnet coronas is consistent with, but not unique to, near‐isobaric cooling paths.  相似文献   

6.
Abstract The prograde metamorphism of eclogites is typically obscured by chemical equilibration at peak conditions and by partial requilibration during retrograde metamorphism. Eclogites from the Eastern Blue Ridge of North Carolina retain evidence of their prograde path in the form of inclusions preserved in garnet. These eclogites, from the vicinity of Bakersville, North Carolina, USA are primarily comprised of garnet–clinopyroxene–rutile–hornblende–plagioclase–quartz. Quartz, clinopyroxene, hornblende, rutile, epidote, titanite and biotite are found as inclusions in garnet cores. Included hornblende and clinopyroxene are chemically distinct from their matrix counterparts. Thermobarometry of inclusion sets from different garnets record different conditions. Inclusions of clinozoisite, titanite, rutile and quartz (clinozoisite + titanite = grossular + rutile + quartz + H2O) yield pressures (6–10 kbar, 400–600 °C and 8–12 kbar 450–680 °C) at or below the minimum peak conditions from matrix phases (10–13 kbar at 600–800 °C). Inclusions of hornblende, biotite and quartz give higher pressures (13–16 kbar and 630–660 °C). Early matrix pyroxene is partially or fully broken down to a diopside–plagioclase symplectite, and both garnet and pyroxene are rimmed with plagioclase and hornblende. Hypersthene is found as a minor phase in some diopside + plagioclase symplectites, which suggests retrogression through the granulite facies. Two‐pyroxene thermometry of this assemblage gives a temperature of c. 750 °C. Pairing the most Mg‐rich garnet composition with the assemblage plagioclase–diopside–hypersthene–quartz gives pressures of 14–16 kbar at this temperature. The hornblende–plagioclase–garnet rim–quartz assemblage yields 9–12 kbar and 500–550 °C. The combined P–T data show a clockwise loop from the amphibolite to eclogite to granulite facies, all of which are overprinted by a texturally late amphibolite facies assemblage. This loop provides an unusually complete P–T history of an eclogite, recording events during and following subduction and continental collision in the early Palaeozoic.  相似文献   

7.
Relict eclogites and associated high-pressure rocks are present in the Eastern Segment of the SW Swedish gneiss region (the tectonic counterpart of the Parautochthonous Belt of the Canadian Grenville). These rocks give evidence of Sveconorwegian eclogite facies metamorphism and subsequent pervasive reworking and deformation at granulite and amphibolite facies conditions. The best-preserved eclogite relics suggest a clockwise PT t history, beginning in the amphibolite facies, progressing through the eclogite facies, decompressing and partially reequilibrating through the high- and medium-pressure granulite facies, before cooling through the amphibolite facies. Textures demonstrate the former coexistence of the plagioclase-free assemblages garnet+clinopyroxene+quartz+rutile+ilmenite, garnet+clinopyroxene+ kyanite+rutile, and garnet+kyanite+quartz+rutile. The former existence of omphacite is evidenced by up to 45 vol.% plagioclase expelled as small grains within large clinopyroxene. Matrix plagioclase is secondary and occurs expelled from clinopyroxene or in fine-grained, granulite facies reaction domains formed during resorption of garnet and kyanite. Garnet shows preserved prograde growth zoning with rimward increasing pyrope content, decreasing spessartine content and decreasing Fe/(Fe+Mg) ratio, but is partly resorbed and reequilibrated at the rims. PT estimates from microdomains with clinopyroxene+plagioclase+quartz+garnet indicate pressures of 9.5–12 kbar and temperatures of 705–795 °C for a stage of the granulite facies decompression. The preservation of the prograde zoning suggests that the rocks did not reside at these high temperatures for more than a few million years, and chemical disequilibrium and ‘frozen’ reaction textures indicate heterogeneous reaction progress and overstepping of reactions during the decompression through the granulite facies. Together these features suggest a rapid tectonic exhumation. The eclogite relics occur within a high-grade deformation zone with WNW–ESE stretching and associated oblique normal-sense, top-to-the-east (sensu lato) displacement, suggesting that extension was a main cause for the decompression and exhumation. Probable tectonic scenarios for this deformation are Sveconorwegian late-orogenic gravitational collapse or overall WNW–ESE extension.  相似文献   

8.
A petrological and thermobarometric study of the Lago Teleccio hornfelses was undertaken to reconstruct the polymetamorphic evolution and constrain the P–T conditions of Permian contact metamorphism. The Lago Teleccio metasedimentary rocks record a Variscan regional metamorphism characterized by amphibolite facies mineral assemblages including quartz, plagioclase, K‐feldspar (Kfs 1), biotite, garnet (Grt 1) and staurolite; this was followed by a late‐Variscan mylonitization event. Metamorphism of the Variscan metamorphic rocks at the contact with a Permian granitic intrusion produced static recrystallization and/or new growth of quartz, garnet (Grt 2), plagioclase, K‐feldspar (Kfs 2), cordierite, green spinel, biotite and prismatic sillimanite (Contact 1). This thermal event, which occurred at a peak pressure of 0.23–0.35 GPa, temperature of 670–700 °C and aH2O of 0.751, was followed either during post‐contact metamorphism cooling or, more likely, during the early‐Alpine metamorphism by the breakdown of cordierite into an anhydrous kyanite + orthopyroxene + quartz assemblage. The poorly developed early‐Alpine eclogite facies metamorphism (Alpine 1) was characterized by relatively anhydrous mineral associations and low strain, which locally produced coronitic and pseudomorphous microstructures in metasedimentary rocks, with scanty formation of jadeite, zoisite and a new high‐pressure garnet (Grt 3). Greenschist facies retrogression (Alpine 2) was characterized by the local development of a chlorite‐ and muscovite‐bearing mineral association, suggestive of aqueous fluid incursion. In the hornfelses, the limited extent of metamorphic overprinting is suggested by the fine grain size of the Alpine mineral associations, which formed at the expense of the Permian contact metamorphic associations, and was favoured by the anhydrous mineralogy of the hornfelses.  相似文献   

9.
Detailed X‐ray compositional mapping and microtomography have revealed the complex zoning and growth history of garnet in a kyanite‐bearing eclogite. The garnet occurs as clusters of coalesced grains with cores revealing slightly higher Ca and lower Mg than the rims forming the coalescence zones between the grains. Core regions of the garnet host inclusions of omphacite with the highest jadeite, and phengite with the highest Si, similar to values in the cores of omphacite and phengite located in the matrix. Therefore, the core compositions of garnet, omphacite, and phengite have been chosen for the peak pressure estimate. Coupled conventional thermobarometry, average P–T, and phase equilibrium modelling in the NCKFMMnASHT system yields P–T conditions of 26–30 kbar at 800–930°C. Although coesite is not preserved, these P–T conditions partially overlap the coesite stability field, suggesting near ultra‐high–pressure (UHP) conditions during the formation of this eclogite. Therefore, the peak pressure assemblage is suggested to have been garnet–omphacite–kyanite–phengite–coesite/quartz–rutile. Additional lines of evidence for the possible UHP origin of the Mi?dzygórze eclogite are the presence of rod‐shaped inclusions of quartz parallel to the c‐axis in omphacite as well as relatively high values of Ca‐Tschermak and Ca‐Eskola components. Late zoisite, rare diopside–plagioclase symplectites rimming omphacite, and minor phlogopite–plagioclase symplectites replacing phengite formed during retrogression together with later amphibole. These retrograde assemblages lack minerals typical of granulite facies, which suggests simultaneous decompression and cooling during exhumation before the crustal‐scale folding that was responsible for final exhumation of the eclogite.  相似文献   

10.
Although ultrahigh‐pressure (UHP) metamorphic rocks are present in many collisional orogenic belts, almost all exposed UHP metamorphic rocks are subducted upper or felsic lower continental crust with minor mafic boudins. Eclogites formed by subduction of mafic lower continental crust have not been identified yet. Here an eclogite occurrence that formed during subduction of the mafic lower continental crust in the Dabie orogen, east‐central China is reported. At least four generations of metamorphic mineral assemblages can be discerned: (i) hypersthene + plagioclase ± garnet; (ii) omphacite + garnet + rutile + quartz; (iii) symplectite stage of garnet + diopside + hypersthene + ilmenite + plagioclase; (iv) amphibole + plagioclase + magnetite, which correspond to four metamorphic stages: (a) an early granulite facies, (b) eclogite facies, (c) retrograde metamorphism of high‐pressure granulite facies and (d) retrograde metamorphism of amphibolite facies. Mineral inclusion assemblages and cathodoluminescence images show that zircon is characterized by distinctive domains of core and a thin overgrowth rim. The zircon core domains are classified into two types: the first is igneous with clear oscillatory zonation ± apatite and quartz inclusions; and the second is metamorphic containing a granulite facies mineral assemblage of garnet, hypersthene and plagioclase (andesine). The zircon rims contain garnet, omphacite and rutile inclusions, indicating a metamorphic overgrowth at eclogite facies. The almost identical ages of the two types of core domains (magmatic = 791 ± 9 Ma and granulite facies metamorphic zircon = 794 ± 10 Ma), and the Triassic age (212 ± 10 Ma) of eclogitic facies metamorphic overgrowth zircon rim are interpreted as indicating that the protolith of the eclogite is mafic granulite that originated from underplating of mantle‐derived magma onto the base of continental crust during the Neoproterozoic (c. 800 Ma) and then subducted during the Triassic, experiencing UHP eclogite facies metamorphism at mantle depths. The new finding has two‐fold significance: (i) voluminous mafic lower continental crust can increase the average density of subducted continental lithosphere, thus promoting its deep subduction; (ii) because of the current absence of mafic lower continental crust in the Dabie orogen, delamination or recycling of subducted mafic lower continental crust can be inferred as the geochemical cause for the mantle heterogeneity and the unusually evolved crustal composition.  相似文献   

11.
在一些典型碰撞造山带中,高压麻粒岩与榴辉岩在空间和时间上密切相关,它们之间的关系对揭示碰撞造山带的造山过程和造山机制具有重要意义.本文以中国西部的南阿尔金、柴北缘及中部的北秦岭造山带为例,详细陈述了这3个地区榴辉岩和相关的高压麻粒岩的野外关系、变质演化和形成时代,目的是要建立大陆碰撞造山带中榴辉岩和相关高压麻粒岩形成的地球动力学背景模式.南阿尔金榴辉岩呈近东西向分布在江尕勒萨依,玉石矿沟一带,与含夕线石副片麻岩、花岗质片麻岩和少量大理岩构成榴辉岩一片麻岩单元,榴辉岩中含有柯石英假象,其峰期变质条件为P=2.8~3.0GPa,T=730~850℃,并在抬升过程中经历了角闪岩-麻粒岩相的叠加;大量年代学研究显示其峰期变质时代为485~500Ma.南阿尔金高压麻粒岩分布在巴什瓦克地区,包括高压基性麻粒岩和高压长英质麻粒岩,它们与超基性岩构成了一个大约5km宽的构造岩石单元,与周围角闪岩相的片麻岩为韧性剪切带接触.长英质麻粒岩和基性麻粒岩的峰期组合均具有蓝晶石和三元长石(已变成条纹长石),形成的温压条件为T=930~1020℃,P=1.8~2.5GPa,并在退变质过程中经历了中压麻粒岩相变质作用叠加.锆石SHRIMP测定显示巴什瓦克高压麻粒岩的峰期变质时代为493~497Ma.都兰地区的榴辉岩分布柴北缘HP-UHP变质带的东端,在榴辉岩和围岩副片麻岩中均发现有柯石英保存,形成的峰期温压条件为T=670~730℃和P=2.7~3.25GPa,退变质阶段经过了角闪岩相的叠加;榴辉岩相变质时代为420~450Mao都兰地区的高压麻粒岩分布在阿尔茨托山西部,高压麻粒岩包括基性麻粒岩长英质麻粒岩,基性麻粒岩的峰期矿物组合为Grt+Cpx+Pl±Ky±Zo+Rt±Qtz,长英质麻粒岩的峰期矿物组合为:Grt+Kf+Ky+Pl+Qtz.峰期变质条件为T=800~925℃,P=1.4~1.85GPa,退变质阶段经历了角闪岩-绿片岩的改造,高压麻粒岩的变质时代为420~450Ma.北秦岭榴辉岩分布在官坡-双槐树一带,榴辉岩的峰期变质组合为Grt+Omp±Phe+Qtz+Rt,所计算的峰期温压条件为T=680~770℃和P=2.25~2.65GPa,年代学数据显示榴辉岩的变质时代为500Ma左右.北秦岭高压麻粒岩分布在含榴辉岩单元的南侧松树沟一带,包括高压基性麻粒岩和高压长英质麻粒岩,与超基性岩在空间上密切伴生,高压麻粒岩的峰期温压条件为T=850~925℃,P=1.45~1.80GPa,锆石U-Pb年代学研究显示其峰期变质时代为485~507Ma.以上三个实例显示,出现在同一造山带、在空间上伴生的高压麻粒岩和榴辉岩有各自不同的变质演化历史,但榴辉岩中的榴辉岩相变质时代和相邻的高压麻粒岩中的高压麻粒岩相变质作用时代相同或相近,这种成对出现的榴辉岩和高压麻粒岩代表了它们同时形成在造山带中不同的构造环境中,即榴辉岩的形成于大陆俯冲带中,而高压麻粒岩可能形成在俯冲带之上增厚的大陆地壳根部.  相似文献   

12.
A high-grade metamorphic complex is exposed in Filchnerfjella (6–8°E), central Dronning Maud Land. The metamorphic evolution of the complex has been recovered through a study of textural relationships, conventional geothermobarometry and pseudosection modelling. Relicts of an early, high-P assemblage are preserved within low-strain mafic pods. Subsequent granulite facies metamorphism resulted in formation of orthopyroxene in rocks of mafic, intermediate to felsic compositions, whereas spinel + quartz were part of the peak assemblage in pelitic gneisses. Peak conditions were attained at temperatures between 850–885 °C and 0.55–0.70 GPa. Reaction textures, including the replacement of amphibole and garnet by symplectites of orthopyroxene + plagioclase and partial replacement of garnet + sillimanite + spinel bearing assemblages by cordierite, indicate that the granulite facies metamorphism was accompanied and followed by decompression. The observed assemblages define a clock-wise P-T path including near-isothermal decompression. During decompression, localized melting led to formation of post-kinematic cordierite-melt assemblages, whereas mafic rocks contain melt patches with euhedral orthopyroxene. The granulite facies metamorphism, decompression and partial crustal melting occurred during the Cambrian Pan-African tectonothermal event.  相似文献   

13.
The gneisses of the Makuti Group in north-west Zimbabwe are characterized by complex geometries that resulted from intense non-coaxial deformation in a crustal scale high-strain zone that accommodated extensional deformation along the axis of the Zambezi Belt at c. 800 Ma. Within low-strain domains in the Makuti gneisses, undeformed metagabbroic lenses preserve eclogite and granulite facies assemblages, which record a part of the metamorphic history that predates Pan-African events. Eclogitic rocks can be subdivided into: (1) corona-textured metagabbros that preserve igneous textures, and (2) garnet–omphacite rocks in which primary textures are destroyed. The lenses of eclogitic rocks are enveloped in a mantle of garnet–clinopyroxene–hornblende gneiss, which is a common rock type in the Makuti gneisses. The eclogites preserve multi-staged, domainal, symplectic reaction textures that developed progressively as the rocks experienced loading followed by decompression–heating. In the metagabbros, the original clinopyroxene, plagioclase and olivine domains acted separately during the peak of metamorphism, with plagioclase being replaced by garnet and kyanite, and olivine being replaced by orthopyroxene and possibly omphacite. The peak assemblage was overprinted by: (1) the multi-mineralic corona assemblage pargasite–orthopyroxene–spinel–plagioclase replacing garnet–kyanite–clinopyroxene (possibly at c. 19 kbar, 760±25 °C); (2) orthopyroxene–pargasite–plagioclase–scapolite coronas replacing orthopyroxene (15±1.5 kbar, 750±50 °C); and (3) moats of orthopyroxene–plagioclase replacing garnet (10±1 kbar, 760±50 °C). The garnet–omphacite rocks record similar peak conditions (15±1.1 kbar, 760±60 °C). Garnet–clinopyroxene–hornblende–plagioclase gneisses envelop the eclogites and record matrix conditions of 11±1.5 kbar at 730±50 °C using assemblages that are oriented in the regional fabric. These rocks are characterized by decompression-heating textures, reflecting temperature increases during exhumation of the Makuti gneisses. The eclogite facies rocks formed during a collisional event prior to 850 Ma. Their formation could be related to a suture zone that developed along the axis of the Zambezi Belt during the formation of Rodinia (between 1400 and 850 Ma). The main deformation-metamorphism in the Makuti gneisses occurred around 800 Ma and involved extension and exhumation of the high-P rocks (break-up of Rodinia), which experienced a high-T metamorphic overprint. Around 550–500 Ma, a collisional event associated with the formation of Gondwana resulted in renewed burial and metamorphic recrystallization of the Makuti gneisses.  相似文献   

14.
Petrology of high-pressure granulites from the eastern Himalayan syntaxis   总被引:36,自引:0,他引:36  
The eastern Himalayan syntaxis, situated at the eastern terminus of the Himalayas, is the least-known segment of the Himalayas. Recent research in this area has revealed that the syntaxis consists of the Gangdise, the Yarlung Zangbo, and the Himalayan units, each of which is bounded by faults. The Himalayan unit, the northernmost exposed part of the Indian plate, mainly contains amphibolite facies rocks, marked by the assemblages staurolite+kyanite+plagioclase+biotite+muscovite±sillimanite and garnet+amphibole+plagioclase, in the south; to the north, low- to medium-pressure granulite grade pelitic gneisses and marbles are present and are characterized by the assemblages garnet+sillimanite+K-feldspar+plagioclase or antiperthite+biotite+quartz±spinel±cordierite±orthopyroxene in gneisses, and anorthite+diopside±wollastonite and plagioclase+diopside+quartz+phlogopite+calcite in marbles. Within this unit, the Namula thrust system is a series of moderately north-dipping structures that displaced the granulite facies rocks southwards over the amphibolite facies rocks. High-pressure granulites occur as relics within these granulite facies rocks and contain garnet–kyanite granulite and garnet clinopyroxenite. The peak assemblage of the garnet–kyanite granulite includes garnet (core part)+kyanite+ternary feldspar+quartz+rutile. Sillimanite+garnet (rim part)+K-feldspar+ oligoclase+ilmenite+biotite and spinel+albite+biotite or spinel+cordierite±orthopyroxene, which are coronas around sillimanite and garnet, are retrograde products of this peak assemblage. Another peak assemblage includes very-high-Ca garnet (CaO 32–34 wt%, Alm10±Grs>80) and diopside (CaO 22–24 wt%), scapolite, meionite, quartz, and accessory Al-bearing titanite (Al2O3 4–4.5 wt%). The diopside has kink bands. Partial or complete breakdown of Ca-rich garnet during post-peak metamorphism produced pseudomorphs and coronas consisting of fine-grained symplectic intergrowths of hedenbergite and anorthite. Thermobarometric estimates in combination with reaction textures, mineral compositions, and recent experimental studies indicate that these peak assemblages were formed at P=c. 1.7–1.8 GPa, T =c. 890 °C, and the retrograde assemblages experienced near-isothermal decompression to P=0.5±0.1 GPa, T =850±50 °C. The whole-rock compositions indicate that marble and pelite are plausible candidates for the protoliths. These facts suggest the following (1) sedimentary rocks were transported to upper-mantle depths and equilibrated at those conditions to form these high-pressure granulites, which were then emplaced into the crust quickly. During the rapid exhumation of these rocks, the earlier high-pressure assemblages were overprinted by the later low- to medium-pressure assemblages, that is, the high-pressure granulite belt formed in the syntaxis. (2) The Namula thrust system is an important tectonic boundary in the syntaxis, or even in the Higher Himalaya more generally.  相似文献   

15.
Mafic granulite, generated from eclogite, occurs in felsic granulite at Kle?, Blanský les, in the Bohemian Massif. This is significant because such eclogite is very rare within the felsic granulite massifs. Moreover, at this locality, strong interaction has occurred between the mafic granulite and the adjacent felsic granulite producing intermediate granulite, such intermediate granulite being of enigmatic origin elsewhere. The mafic granulite involves garnet from the original eclogite, containing large idiomorphic inclusions of omphacite, plagioclase and quartz, as well as rutile. The edge of the garnet is replaced by a plagioclase corona, with the garnet zoned towards the corona and also the inclusions. The original omphacite–quartz–?plagioclase matrix has recrystallized to coarse‐grained polygonal (‘equilibrium’‐textured) plagioclase‐diopsidic clinopyroxene–orthopyroxene also with brown amphibole commonly in the vicinity of garnet. Somewhat larger quartz grains are embedded in this matrix, along with minor ilmenite, rutile and zircon. Combining the core garnet composition with core inclusion compositions gives a pressure of the order of 18 kbar from assemblage and isopleths on a P?T pseudosection, with temperature poorly constrained, but most likely >900 °C. From this P?T pseudosection, the recrystallization of the matrix took place at ~12 kbar, and from Zr‐in‐rutile thermometry, at relatively hot conditions of 900–950 °C. It is largely at these conditions that the eclogite/mafic granulite interacted with the felsic granulite to make intermediate granulite (see next paper).  相似文献   

16.
The Flatraket Complex, a granulite facies low strain enclave within the Western Gneiss Region, provides an excellent example of metastability of plagioclase‐bearing assemblages under eclogite facies conditions. Coesite eclogites are found <200 m structurally above and <1 km below the Flatraket Complex, and are separated from it by amphibolite facies gneisses related to pervasive late‐orogenic deformation and overprinting. Granulites within the Flatraket Complex equilibrated at 9–11 kbar, 700–800°C. These predate eclogite facies metamorphism and were preserved metastably in dry undeformed zones under eclogite facies conditions. Approximately 5% of the complex was transformed to eclogite in zones of fluid infiltration and deformation, which were focused along lithological contacts in the margin of the complex. Eclogitisation proceeded by domainal re‐equilibration and disequilibrium breakdown of plagioclase by predominantly hydration reactions. Both hydration and anhydrous plagioclase breakdown reactions were kinetically linked to input of fluid. More pervasive hydration of the complex occurred during exhumation, with fluid infiltration linked to dehydration of external gneisses. Eclogite facies shear zones within the complex equilibrated at 20–23 kbar, 650–800°C, consistent with the lack of coesite and with the equilibration conditions of external HP eclogites. If the complex experienced pressures equivalent to those of nearby coesite eclogites (> 28 kbar), unprecedented metastability of plagioclase and quartz is implied. Alternatively, a tectonic break exists between the Flatraket Complex and UHP eclogites, supporting the concept of a tectonic boundary to the UHP zone of the Western Gneiss Region. The distribution of eclogite and amphibolite facies metamorphic overprints demonstrates that the reactivity of the crust during deep burial and exhumation is strongly controlled by fluid availability, and is a function of the protolith.  相似文献   

17.
The South Altyn orogen in West China contains ultra high pressure (UHP) terranes formed by ultra‐deep (>150–300 km) subduction of continental crust. Mafic granulites which together with ultramafic interlayers occur as blocks in massive felsic granulites in the Bashiwake UHP terrane, are mainly composed of garnet, clinopyroxene, plagioclase, amphibole, rutile/ilmenite, and quartz with or without kyanite and sapphirine. The kyanite/sapphirine‐bearing granulites are interpreted to have experienced decompression‐dominated evolution from eclogite facies conditions with peak pressures of 4–7 GPa to high pressure (HP)–ultra high temperature (UHT) granulite facies conditions and further to low pressure (LP)–UHT facies conditions based on petrographic observations, phase equilibria modelling, and thermobarometry. The HP–UHT granulite facies conditions are constrained to be 2.3–1.6 GPa/1,000–1,070°C based on the observed mineral assemblages of garnet+clinopyroxene+rutile+plagioclase+amphibole±quartz and measured mineral compositions including the core–rim increasing anorthite in plagioclase (XAn = 0.52–0.58), core–rim decreasing jadeite in clinopyroxene (XJd = 0.20–0.15), and TiO2 in amphibole (TiM2/2 = 0.14–0.18). The LP–UHT granulite facies conditions are identified from the symplectites of sapphirine+plagioclase+spinel, formed by the metastable reaction between garnet and kyanite at <0.6–0.7 GPa/940–1,030°C based on the calculated stability of the symplectite assemblages and sapphirine–spinel thermometer results. The common granulites without kyanite/sapphirine are identified to record a similar decompression evolution, including eclogite, HP–UHT granulite, and LP–UHT granulite facies conditions, and a subsequent isobaric cooling stage. The decompression under HP–UHT granulite facies is estimated to be from 2.3 to 1.3 GPa at ~1,040°C on the basis of textural records, anorthite content in plagioclase (XAn = 0.25–0.32), and grossular content in garnet (XGrs = 0.22–0.19). The further decompression to LP–UHT facies is defined to be >0.2–0.3 GPa based on the calculated stability for hematite‐bearing ilmenite. The isobaric cooling evolution is inferred mainly from the amphibole (TiM2/2 = 0.14–0.08) growth due to the crystallization of residual melts, consistent with a temperature decrease from >1,000°C to ~800°C at ~0.4 GPa. Zircon U–Pb dating for the two types of mafic granulite yields similar protolith and metamorphic ages of c. 900 Ma and c. 500 Ma respectively. However, the metamorphic age is interpreted to represent the HP–UHT granulite stage for the kyanite/sapphirine‐bearing granulites, but the isobaric cooling stage for the common granulites on the basis of phase equilibria modelling results. The two types of mafic granulite should share the same metamorphic evolution, but show contrasting features in petrography, details of metamorphic reactions in each stage, thermobarometric results, and also the meaning of zircon ages as a result of their different bulk‐rock compositions. Moreover, the UHT metamorphism in UHP terranes is revealed to represent the lower pressure overprinting over early UHP assemblages during the rapid exhumation of ultra‐deep subducted continental slabs, in contrast to the cause of traditional UHT metamorphism by voluminous heat addition from the mantle.  相似文献   

18.
Orthopyroxene‐free garnet + clinopyroxene + plagioclase ± quartz‐bearing mineral assemblages represent the paragenetic link between plagioclase‐free eclogite facies metabasites and orthopyroxene‐bearing granulite facies metabasites. Although these assemblages are most commonly developed under P–T conditions consistent with high pressure granulite facies, they sometimes occur at lower grade in the amphibolite facies. Thus, these assemblages are characteristic but not definitive of high pressure granulite facies. Compositional factors favouring their development at amphibolite grade include Fe‐rich mineral compositions, Ca‐rich garnet and plagioclase, and Ti‐poor hornblende. The generalized reaction that accounts for the prograde development of garnet + clinopyroxene + plagioclase ± quartz from a hornblende + plagioclase + quartz‐bearing (amphibolite) precursor is Hbl + Pl + Qtz=Grt + Cpx + liquid or vapour, depending on whether the reaction occurs above or below the solidus. There are significant discrepancies between experimental and natural constraints on the P–T conditions of orthopyroxene‐free garnet + clinopyroxene + plagioclase ± quartz‐bearing mineral assemblages and therefore on the P–T position of this reaction. Semi‐quantitative thermodynamic modelling of this reaction is hampered by the lack of a melt model and gives results that are only moderately successful in rationalizing the natural and experimental data.  相似文献   

19.
Summary Lenses and pods of mafic rocks from the Monotonous Unit near Svetlik are characterized by eclogite facies mineral assemblages; however some inclusion patterns (oriented quartz rods in clinopyroxene and cuboids of disordered graphite in garnet) that are usually known from ultra-high pressure rocks were also observed in one sample. Conventional thermobarometry yielded maximum PT conditions of 2.0–2.5 GPa and 750 °C. Decompression and heating at amphibolite and granulite facies conditions resulted in the formation of at least five distinct types of symplectites. These include symplectitic intergrowth of ilmenite and clinopyroxene after titanite, described here for the first time from the Moldanubian Zone. In addition, symplectites of plagioclase and biotite with accessory amounts of spinel after tabular pseudomorphs (after phengite?) are also reported here. Mass balance relations indicate that symplectites of diopside + plagioclase after omphacite and plagioclase + spinel (sapphirine) after kyanite + garnet, formed by nearly isochemical reactions. All other symplectite-forming reactions were allochemical and were accelerated by the presence of fluid in the primary phases. Preserved zoning pattern in garnet with high compositional gradient in some samples suggests that the rocks were affected briefly by granulite facies overprint.  相似文献   

20.
The Sesia zone (Italian Western Alps) offers one of the best preserved examples of pre-Alpine basement reactivated, under eclogite facies conditions, during the Alpine orogenesis. A detailed mineralogical study of eclogitized acid and basic granulites, and related amphibolites, is presented. In these rare weak to undeformed rocks microstructural investigations allow three main metamorphic stages to be distinguished.
(a) A medium- to low- P granulite stage giving rise to the development of orthopyroxene + garnet + plagioclase + brown amphibole + ilmenite ± biotite in basic granulites and garnet + K-feldspar + plagioclase + cordierite + sillimanite + biotite + ilmenite in acid granulites.
(b) A post-granulite re-equilibration, associated with the development of shear zones, producing discrete amphibolitization of the basic granulites and widespread development of biotite + sillimanite + cordierite + spinel in the acid rocks.
(c) An eo-Alpine eclogite stage giving rise to the crystallization of high- P and low- T assemblages.
In an effort to quantify this evolution, independent well-calibrated thermobarometers were applied to basic and acid rocks. For the granulite event, P-T estimates are 7–9 kbar and 700–800° C, and for subsequent retrograde evolution, P-T was 4–5 kbar and 600° C. For the eo-Alpine eclogite metamorphism, pressure and temperature conditions were 14–16 kbar and 550° C.
The inferred P-T path is consistent with an uplift of continental crust produced by crustal thinning prior to the subduction of the continental rocks. In the light of the available geochronological constraints we propose to relate the pre-Alpine granulite and post-granulite retrograde evolution to the Permo-Jurassic extensional regime. The complex granulite-eclogite transition is thus regarded as a record of the opening and of the closure of the Piedmont ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号