首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
扭动微动的模拟及其试验研究   总被引:2,自引:2,他引:0  
在CETR UMT-2型多功能摩擦磨损试验机上配置高精度低速往复转动台,构成新型试验装置并成功实现了球/平面接触条件下的扭动微动;在低速往复转动台上进行了GCr15钢球(直径10 mm)与LZ50钢在扭动角位移幅值为3°~20°和法向载荷10 N时的扭动微动试验,并在分析其摩擦动力学行为的基础上对LZ50钢的扭动微动损伤特征进行探讨.结果表明:角位移幅值和循环次数对扭动微动行为影响很大;可以通过摩擦力矩-角位移(T-θ)曲线表征扭动微动行为;随着循环次数变化,T-θ曲线呈3种基本类型,即平行四边形状、椭圆状和直线状.扭动微动损伤在低角位移幅值时较轻微,随着角位移幅值增加,出现塑性流动、氧化磨损和剥层.  相似文献   

2.
TiN涂层的径向微动行为   总被引:1,自引:1,他引:0  
对GCr15/45#钢和GCr15/离子镀TiN涂层的45钢摩擦副进行了径向微动试验,试验的最大载荷从200N到800N,循环次数为10^5。摩擦磨损试验结果表明,TiN涂层的抗塑性变形能力和抗么向微动损伤能力比基体好,SEM分析表明,TiN涂层的磨屑呈现剥层特征钢试样表现出粘着现象。  相似文献   

3.
钢丝的微动磨损及其对疲劳断裂行为的影响研究   总被引:3,自引:5,他引:3  
采用自制的钢丝微动磨损试验机考察了钢丝的微动摩擦磨损性能,随后将经过一定时间微动磨损试验后的钢丝试样在液压伺服疲劳试验机上进行拉一拉疲劳试验,进而探讨了微动摩擦系数和微动磨损深度随微动磨损试验时间和接触载荷的变化关系;并利用扫描电子显微镜分析了试样磨痕和磨屑的表面形貌.结果表明,在较大的微动振幅下,钢丝的微动摩擦系数变化幅度不大,微动磨损深度随微动磨损试验时间和接触载荷的增加而增大;微动磨损试验后钢丝试样的疲劳寿命同磨损深度成反比关系;可以将疲劳断口划分为4个区域,其同钢丝试样的疲劳断裂过程相对应.  相似文献   

4.
王大刚  张俊 《摩擦学学报》2021,41(5):710-722
微动疲劳是矿井提升钢丝绳主要失效形式之一,在钢丝微动疲劳过程中,微动磨损严重影响钢丝微动疲劳裂纹扩展特性,进而制约钢丝微动疲劳断裂机制,故开展考虑微动磨损的钢丝微动疲劳裂纹扩展寿命预测研究至关重要. 运用自制钢丝微动疲劳试验机开展钢丝微动疲劳试验和拉伸断裂试验,通过高速度数码显微系统揭示微动疲劳过程中钢丝微动磨损演化、裂纹萌生和扩展及断裂特性,基于摩擦学和断裂力学理论,运用有限元法、循环迭代法和虚拟裂纹闭合技术建立了考虑微动磨损的钢丝微动疲劳裂纹扩展寿命预测模型,并进行试验验证. 结果表明:采用微动疲劳过程稳定阶段磨损系数预测钢丝微动磨损演化可保证预测正确性,微动疲劳过程中钢丝主要为I型裂纹扩展模式,考虑微动磨损的钢丝微动疲劳裂纹扩展寿命预测值和试验值吻合较好,验证了预测模型正确性.   相似文献   

5.
通过径向和切向微动试验考察了二硫化钼粘结固体润滑涂层的微动摩擦学特性 ,并利用扫描电子显微镜、能量色散谱和X射线光电子能谱等分析了两类微动损伤区的微观特征 .结果表明 :二硫化钼粘结固体润滑涂层具有良好的抗径向微动损伤性能 ;切向微动条件下无混合区存在 ,涂层损伤强烈依赖于位移幅值 ,并伴随MoS2 的氧化 ;径向微动损伤呈现切向微动部分滑移区的特征  相似文献   

6.
车轴与车轮通过过盈配合组成轮对,承受着车辆的全部重量,是保证高速动车组运行安全的最重要部件.高速列车轮轴的疲劳周次长达109,实物轮轴试验的过程复杂、周期长且试验费用高.因此,通过缩比模型反映和预示实物轮轴试验结果具有极大的理论价值和工程意义.本文中结合相似定理和量纲分析原理,分析并推导了轮轴过盈配合微动参量随在不同缩比系数下的相似关系,采用ABAQUS有限元软件对微动参量分布进行仿真分析,结果表明,微动参量在不同缩比系数模型中的分布规律和理论推导的相似关系一致;轮轴接触压应力以及轴向摩擦剪切应力的最大值,位于车轴轮座区域靠近齿轮箱座的内侧,高速列车车轴轮座内侧接触边缘最容易发生微动疲劳失效.  相似文献   

7.
微动白层形成的控制因素及其对磨损过程的影响   总被引:6,自引:1,他引:6  
在径向和复合(切向与径向复合)微动条件下,考察了2091铝锂合金在不同载荷水平和倾斜角度下的微动行为和损伤过程;结合不同阶段微动磨痕剖面分析,研究了微动白层(TTS)的形成条件,并详细分析了在不同微动阶段TTS的演变过程.结果表明,TTS形成的主要控制因素是表面切应力和切向位移,TTS形成过程呈现塑性变形特征;TTS对磨损过程具有重要影响.  相似文献   

8.
在不同参数条件下,针对吊弦用CuMg0.4合金在自主设计的弯曲微动疲劳装置上进行了微动疲劳试验,建立了其疲劳寿命S-N曲线,并结合扫描电镜(SEM)、三维轮廓仪、电子探针(EPMA)等微观分析设备对损伤区域进行了微观分析,探究了吊弦材料的弯曲微动疲劳损伤特性及演变规律.结果显示在接触区处于弹性条件下时,其弯曲微动疲劳S-N曲线呈现倾斜的"Z"型特征,微动疲劳寿命随弯曲应力的增大呈现先减小后增大的趋势,微动依次运行于PSR(部分滑移区)、MFR(混合区)、SR(完全滑移区).接触区主要存在磨粒磨损、氧化磨损、疲劳磨损和黏着磨损四种形式的弯曲微动疲劳损伤;微动疲劳裂纹的萌生和扩展从以接触应力控制为主逐渐转为主要受弯曲疲劳应力控制,整个过程分为三个阶段.  相似文献   

9.
作者对9Cr18Mo钢的氮离子注入试样及未注入试样进行了微动磨损的对比试验,利用扫描电子显微镜对磨损表面的形貌进行了观察,利用俄歇电子能谱仪和微区X-射线衍射仪对氮离子注入试样表面与磨损表面的元素分布及相组成进行了分析。结果表明,氮离子注入不仅能使材料的抗微动磨损性能明显提高,而且还可以使材料的微动磨损机制发生改变。作者认为,在氮离子注入层内形成了氮化物相,氮化物相的析出有助于改善9Cr18Mo钢的抗微动磨损性能。  相似文献   

10.
对用于飞机结构抗鸟撞试验的仿真鸟弹进行了研究,给出了配方,其基体材料为明胶和水.密度是仿真鸟弹的关键参数,通过工艺流程和添加调质材料对其进行控制.鸟弹外形尺寸和重量由模具保证,制作出了满足规范要求的1.8kg标准形态鸟弹.利用4块12mm厚的铝板,进行了3次真实鸟弹试验和1次仿真鸟弹的鸟撞对比试验.试验结果表明,仿真鸟弹具有足够的强度可承受发射过载.同时仿真鸟弹与真实鸟弹的动态变形模式以及结构动态应变响应时间历程基本一致.其结构动态应变响应最大值仅相差3.2%,而结构残余变形相差8.7%.上述结果证明了本文研制的仿真鸟弹可以在结构抗鸟撞试验研究中替代真实鸟弹.  相似文献   

11.
关于复合式微动的研究   总被引:15,自引:5,他引:10  
在新型径向微动试验装置上 ,改变试样的倾斜角度 ,实现了径向微动和切向微动的复合 .考察了 GCr15钢球 /2 0 91铝锂合金在倾斜 30°和 45°以及不同外加载荷条件下的复合微动损伤行为 ,并分析了其磨痕特征  相似文献   

12.
外加极化电位对316L不锈钢微动磨蚀行为的影响   总被引:2,自引:0,他引:2  
采用球-平面接触微动磨损试验机考察了轧制固溶316L不锈钢在不同极化状态下的微动磨蚀行为。结果表明:在阳极极化状态下,随着极化电位的升高,腐蚀疲劳微断裂作用增强,促进了微动损伤过程的发展;在阴极保护状态下,摩擦系数随微动过程的变化规律及微动损伤形貌与阳极极化态下的存在显著差异,在阴极极化态下,微动磨擦副之间的粘着导致较高的微动摩擦应力状态,但与阳极极化态相比并未产生严重损伤。  相似文献   

13.
316L不锈钢在Saline溶液中的微动磨蚀行为研究   总被引:2,自引:2,他引:0  
采用球-平面接触微动磨损试验设备考察了轧制固溶316L不锈钢在Saline溶液中的微动磨蚀行为。研究表明,316L不锈钢的微动过程存在显著的阶段性;微动初期为磨合期,第一稳定阶段摩擦副处于高摩擦应力状态,伴随着不锈钢表面缝隙腐蚀与弹塑性损伤的积累;第二过渡阶段和第二稳定阶段不锈钢表面呈微断裂剥层特征,腐蚀引起的微断裂不可忽视,不锈钢微动损伤表面形貌同微动损伤速率之间存在对应关系。  相似文献   

14.
脂润滑对100C6钢微动磨损特性的影响   总被引:4,自引:1,他引:4  
探讨了在不同振幅及载荷作用下脂润滑对100C6钢微动磨损特性的影响,研究表明,脂润滑可缓解微动接触表面的损伤,滑移区域中润滑脂减摩效果优于部分滑移区和混合区,润滑脂在接触界面之间很难保持有效润滑;在稳定的脂润滑上微动区域的划分变化不大。  相似文献   

15.
表面改性技术在微动摩擦学领域中的应用   总被引:12,自引:5,他引:12  
对近年来国内外在采用表面改性技术改善材料的抗微动损伤性能方面的研究和进展作了简要的综述。分析了各种表面改性层在微动摩擦学中的应用和作用机制。指出采用多种表面改性手段,如表面机械强化,表面化学处理及表面涂覆等可不同程度地提高材料的抗微动损伤性能,延长零件的服役寿命。  相似文献   

16.
AZ91D镁合金滑移区域微动磨损机理研究   总被引:3,自引:1,他引:3  
采用Deltalab-Nene7型电液伺服式微动磨损试验机研究了AZ91D镁合金在滑移区域的微动磨损机理;采用光学显微镜和扫描电子显微镜分析了微动磨损表面形貌.结果表明:镁合金的微动过程可以划分为4个阶段,镁合金的摩擦系数变化规律、微动损伤机制、微动损伤表面形貌及磨屑剥离机制等随微动磨损阶段的不同亦有所不同;镁合金微动磨屑主要由金属镁以及镁、铝和锌的氧化物组成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号