首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
为深入了解超细水雾对甲烷爆炸的抑制作用,搭建小尺寸半封闭可视化试验平台并开展试验,研究超细水雾喷施量、甲烷体积分数、通入甲烷位置和预混时间4个因素对甲烷与空气的混合物的爆炸的影响。结果表明:超细水雾能有效抑制甲烷爆炸,其中对9. 5%甲烷的抑制作用最明显;随着超细水雾喷施量的增大,抑制作用增强;甲烷体积分数对甲烷爆炸最大爆炸超压ΔP_(max)有显著影响,超细水雾喷施量对甲烷爆炸ΔP_(max)有一定影响;超细水雾喷施量对甲烷爆炸火焰传播时间有显著影响,甲烷体积分数对甲烷爆炸火焰传播时间有一定影响。  相似文献   

2.
为研究含NaCl添加剂超细水雾对甲烷爆炸的影响,在自制的半封闭透明管道内,进行含NaCl添加剂超细水雾抑制甲烷爆炸试验,通过检测和分析在不同NaCl浓度情况下超细水雾的粒径和甲烷爆炸的平均火焰传播速度、爆炸超压以及平均升压速率,探究NaCl浓度对超细水雾粒径及其对抑制甲烷爆炸有效性的影响。研究结果表明:NaCl浓度对超细水雾粒径影响较小;对于体积分数为9.5%的甲烷,相比于纯甲烷爆炸,其平均火焰传播速率、最大爆炸超压以及平均升压速率分别下降了53.7%,63.4%和60.7%,相比于超细纯水雾,其平均火焰传播速率、最大爆炸超压以及平均升压速率分别下降了38.6%,58%,56%;在通雾量相同的条件下,浓度为2.5%NaCl超细水雾对体积分数为9.5%的甲烷爆炸抑制性能最佳;含NaCl添加剂超细水雾的物理化学共同作用可以有效抑爆甲烷。  相似文献   

3.
为加强超细水雾对甲烷爆炸的抑制效果,搭建小尺寸半封闭甲烷爆炸试验平台,开展氩气协同超细水雾抑制甲烷爆炸试验。通过单因素和曲面优化试验,测试氩气、超细水雾以及两者的协同作用对甲烷爆炸的抑制效果;从火焰特性、最大爆炸超压和平均升压速率3个方面探究氩气和超细水雾协同抑爆的优越性。结果表明:氩气和超细水雾协同抑制甲烷爆炸效果显著;随着氩气体积分数和超细水雾喷雾量的增加,火焰冲出管道的时间逐渐延长,最大爆炸超压和平均升压速率逐渐降低;其中氩气体积分数10%、超细水雾喷雾量4.2 m L的工况抑制效果最佳;甲烷最大爆炸超压较氩气和超细水雾单独作用下分别下降6.15和2.68 k Pa,说明氩气和超细水雾抑止甲烷爆炸具有协同效应。  相似文献   

4.
为了解CO2-超细水雾对瓦斯/煤尘爆炸抑制特性,用自行搭建的实验系统,从超压、火焰传播速度和火焰结构3个方面研究了CO2-超细水雾形成的气液两相介质对9.5%瓦斯/煤尘复合体系爆炸的抑爆效果、影响因素与原因。研究结果表明:随着CO2体积分数和超细水雾质量浓度的增加,爆炸火焰最大传播速度、爆炸超压峰值均出现明显下降,火焰到达泄爆口时间显著延迟;尤其当CO2体积分数达到14%与超细水雾的共同抑爆效果凸显,瓦斯/煤尘复合体系爆炸超压的“震荡平台”消失,同时火焰结构呈现“整体孔隙化”。所得结论为煤矿井下高效防爆抑爆技术进行了完善和增强。  相似文献   

5.
利用自行研制的超细水雾抑制管内丙烷爆炸的小尺寸试验系统,研究超细水雾抑制管内丙烷爆炸的有效性.试验采用0.6m×0.09m的圆柱形透明玻璃管,研究体积分数为2.7%~3.7%的丙烷/空气预混气体在0~2 mL超细水雾作用下的爆炸火焰传播特性,测定超细水雾作用下丙烷爆炸下限及火焰传播速度的变化规律,探讨超细水雾对管内丙烷爆炸火焰的抑制机理及效果.结果表明:超细水雾可显著提高丙烷的爆炸下限,降低丙烷爆炸的危险性;超细水雾可有效抑制丙烷爆炸的传播速度,且随超细水雾添加量增大,传播速度不断降低;根据抑制率计算结果,在贫燃料情况下,超细水雾对丙烷爆炸的抑制效果随雾量增大和体积分数降低而增强.  相似文献   

6.
利用自主搭建的易爆气体爆炸试验平台,研究了甲烷体积分数为8%、9%、9.5%、10%、11%的甲烷-空气混合气体的爆炸特性。结果表明:爆炸火焰在管道内经历了层流火焰传播加速、郁金香火焰传播速度变慢和湍流火焰传播速度增大3个特征阶段;爆炸管道压力表现出升压、振荡和反向冲击3个变化阶段;爆炸感应期、火焰最大传播加速度和最大爆炸升压速率等特征参数能更好地反映易爆气体的爆炸能力和爆炸强度。结合爆炸火焰图片、光电传感信号和压力传感信号发现,在一端开口的管道内,爆炸压力出现变化的时间总是先于火焰传播速度的变化时间,表明爆炸压力的变化是导致火焰传播速度变化的原因。因此,抑爆过程中,减小爆炸压力和降低升压速率是达到良好抑爆效果的关键。  相似文献   

7.
为提升滑移装置抑爆效果,在方形管中通入体积分数为9.5%甲烷/空气预混气体,分析细水雾协同不同弹性系数滑移装置作用下,水雾起始喷洒时间对预混气体爆炸特性影响。结果表明:先喷、指尖喷出现坡形火焰二次加速火焰传播,爆炸反应加剧,水雾不同程度充当障碍物加速火焰传播和碰壁断链,缩短火焰熄灭时间;后喷细水雾障碍物作用微弱,利用吸热降温作用抑制火焰传播,熄灭耗时相对较长。在爆炸超压方面,0.22 N/mm、0.42 N/mm 2种弹性系数滑移装置协同作用,先喷情形超压峰值增幅分别为9.25%、16.55%,指尖喷情形则高达88.71%、77.37%,促爆效果明显。后喷有一定的抑爆作用,超压峰值降幅分别为7.11%、2.93%。综上,后喷的抑爆效果优于先喷和指尖喷。  相似文献   

8.
为研究矿井火区中一氧化碳(CO)、氢气(H_2)、乙烯(C_2H_4)和乙烷(C_2H_6)等其他可燃气体对甲烷(CH_4)爆炸特性的影响,利用可视球形气体爆炸系统开展了多元可燃气体爆炸压力特性试验,观察并分析了峰值爆炸压力、最大爆炸压力上升速率及其相应时间。通过高速摄影系统拍摄了视窗范围内爆炸火焰传播图像,基于边缘检测方法确定了火焰前锋位置,继而得到最大火焰传播速度。分析了以氢气为主要成分的其他可燃气体对低浓度CH_4-空气混合物压力特性和火焰传播行为的影响。结果表明,多元可燃气体的存在增加了低浓度CH_4-空气混合物的爆炸危险性。随混合气体体积分数增加,低浓度CH_4-空气混合物的峰值爆炸压力、最大爆炸压力上升速率和最大火焰传播速度非线性增加;此外,到达峰值爆炸压力、最大爆炸压力上升速率的时间显著缩短。  相似文献   

9.
市政排污空间作为城市公共基础设施的重要组成部分,易积聚可燃气体形成爆炸性环境。结合排污空间的特殊环境条件,采用Fluidyn-MP多物理场数值模拟软件,建立了20 L球形爆炸罐分析模型,通过改变初始温度和初始压力,对排污空间甲烷-空气混合物爆燃特性及其变化规律进行模拟研究。结果表明:初始温度升高导致甲烷-空气混合物最大爆炸压力降低,缩短了到达最大爆炸压力的时间;初始压力增加导致最大爆炸压力急剧升高,并延长了到达最大爆炸压力的时间;最大爆炸压力对初始压力的敏感程度远大于初始温度的影响。此外,随着初始温度和初始压力的升高,爆炸火焰平均传播速度增加,而火焰传播速度对初始温度较敏感。  相似文献   

10.
可燃气体爆炸破坏效应的试验研究   总被引:1,自引:1,他引:0  
借助高速摄像机及ProAnalyst软件,研究可燃气体体积分数和障碍物对可燃气体爆炸破坏力的影响。测定不同体积分数下的甲烷-空气预混气体爆炸冲击波超压,和爆炸火焰波在有无乒乓球方向传播的平均速度。试验结果表明:超压和平均速度均随着甲烷体积分数的增加呈现先增大后减小的变化趋势,其最大值均出现在甲烷体积分数为10%~11%之间;同一体积分数下的甲烷-空气预混气体爆炸火焰波在有乒乓球方向传播的平均速度比没有乒乓球方向传播的平均速度大。根据试验结果,推导出可燃气体爆炸冲击波超压和爆炸火焰波传播平均速度与可燃气体体积分数之间的函数关系,并得出障碍物对爆炸火焰波传播的加速作用随着体积分数的增加呈现先加强后减弱的变化趋势。  相似文献   

11.
基于自制小尺寸试验平台进行不同体积分数瓦斯爆炸试验,运用高速摄像机拍摄爆炸图像,直观分析火焰传播过程。利用Matlab软件对拍摄图像进行数字化处理,求得不同瓦斯体积分数下的爆炸火焰传播速度。结果表明:基于图像处理的方法能够简单准确地计算火焰传播速度,火焰亮度阈值的取值对火焰传播速度计算结果有重要影响;火焰传播速度随时间逐渐增大,当出现"郁金香"火焰后略有降低,随后继续增大;瓦斯体积分数对平均火焰传播速度有较大影响,混合当量比为1时火焰传播速度最大,在混合当量比小于1时,火焰传播速度受混合当量比影响较大,而当混合当量比大于1时,火焰传播速度受混合当量比影响较小。  相似文献   

12.
为探究甲烷/空气预混气体当量比对Hele-Shaw通道内火焰爆燃特性的影响,自行设计搭建尺寸(长×宽×厚)为950 mm×200 mm×6 mm的透明有机玻璃瓦斯爆炸管道试验平台。通过改变试验平台厚度研究通道间隙对甲烷/空气预混气体火焰结构与传播特性的影响。结果表明,不同的通道厚度和当量比对火焰锋面结构和火焰传播动态特性有显著影响。当通道厚度为6 mm时,最大火焰传播速度发生在化学当量比下,为12.84 m/s,且在该工况下火焰最先到通道末端,时间为518.57 ms。当量比为0.8的贫燃状态时,在火焰不稳定性的作用下,火焰传播后期出现二次振荡现象及手指形的火焰锋面。随着通道厚度的减小,火焰到达通道末端的时间逐渐变长,对火焰整体传播速度有明显的抑制作用。  相似文献   

13.
为了探究不同含水率煤尘在瓦斯爆炸诱导下的爆炸传播规律,利用自行搭建的直管瓦斯爆炸诱导煤尘二次爆炸实验系统,从冲击波压力和火焰传播速度2个方面,研究了不同含水率沉积煤尘在瓦斯爆炸诱导下的爆炸传播规律和原因。研究结果表明:当煤尘含水率小于40%时,管道内沉积煤尘会在瓦斯爆炸诱导下产生二次爆炸,同时沉积煤尘总量一定时,沉积煤尘二次爆炸产生的冲击波超压峰值和火焰传播速度随着煤尘含水率的增加先增大后减小;当沉积煤尘含水率为20% 时,煤尘二次爆炸产生的冲击波超压峰值、火焰传播速度峰值达到最大值,分别为1.657 MPa和468.060 m/s;当沉积煤尘含水率大于40%时,沉积煤尘无法产生二次爆炸,此时爆炸产生的威力小于单一瓦斯爆炸,火焰传播速度衰减较无煤尘的瓦斯爆炸更快,沉积煤尘起到抑制瓦斯爆炸传播的作用。研究结果可以为防治煤尘二次爆炸提供理论依据。  相似文献   

14.
含添加剂细水雾抑制瓦斯爆炸有效性试验研究   总被引:2,自引:0,他引:2  
为进一步提高细水雾的抑爆灭火效能,在建立细水雾抑爆系统试验平台的基础上,选用MgCl2、FeCl2和NaHCO3这3种添加剂,研究细水雾对瓦斯爆炸火焰的抑制效果.结果表明:使用含添加剂细水雾后,体积分数为9.5%的瓦斯的爆炸传播速度从13.8 m/s至少降到2.75 m/s;水雾区火焰长度最多缩短了242 mm;含0.8%FeCl2的细水雾有效性系数为6,有效性最高;从火焰图片剖面像素分布可以看出,火焰的辐射体温度均出现了不同程度的降低.不同添加剂不同程度地提高了细水雾的灭火效能,对瓦斯体积分数接近化学当量比的火焰传播有明显抑制效果.  相似文献   

15.
为研究不同长度分支管道对油气爆炸强度的影响,搭建不同分支管道试验系统。分别在直管道中和带有分支管道的直管道中进行油气体积分数为1.75%的爆炸试验,并分析爆炸超压值、升压速率、火焰传播速度以及火焰强度等特性参数变化情况。试验结果表明,分支管道对直管内的爆炸超压、升压速率、火焰传播速度、火焰强度和火焰持续时间有强化作用,并且分支管道越长,强化作用越显著,但是较短的分支管道由于面积突扩导致的泄压效应和管壁耗散效应占主导地位,使得分支管道后火焰传播速度下降。  相似文献   

16.
为揭示贫燃条件下障碍物对开敞空间天然气爆炸特性的影响,试验记录了火焰传播形态和爆炸压力,并对火焰结构和压力空间分布进行了数值分析.结果表明:在无障碍物工况下,火焰近似以球形向外膨胀传播,火焰表面较为连续,火焰传播速度较慢,爆炸压力较低;而在障碍物的湍流扰动下,火焰表面出现较大的"褶皱"结构,火焰燃烧表面积显著增大,火焰传播速度升高,爆炸压力也相应增大.相比于由障碍物引起的火焰加速作用,因流体动力学不稳定性产生的失稳效应可忽略不计.由温度分布可清晰观察火焰表面"褶皱"结构的形成过程,计算所得的爆炸压力达到峰值时间较早,且超压峰值相比试验值较低.  相似文献   

17.
通过搭建长为20m、截面为0.08m×0.08m的非绝热开口钢管,研究了甲烷与空气预混气体发生爆炸后的火焰和压力发展特征。实验结果表明:火焰信号最强的时刻对应于火焰前锋反应区内某时刻,而火焰信号起始上升时刻与火焰前锋预热区起始时刻接近,应选择某点火焰信号起始上升时刻作为该点的火焰到达时间。随着远离点火源距离的增加,火焰厚度呈现先变薄后变厚的变化趋势,最大超压呈现先减小、后增大、再减小的趋势,火焰传播速度则呈先增大后减小的变化过程。非绝热开口钢管的实验条件对爆炸超压和火焰传播速度的影响较大。研究成果可为甲烷爆炸致灾机制及防控的研究提供参考。  相似文献   

18.
对油气在封闭管道内的爆炸特性进行研究,发现爆炸超压发展过程可以分为3个阶段:第1次超压上升阶段、第2次超压上升阶段和超压下降阶段。初始油气浓度对爆炸初始阶段的发展有很大影响,油气浓度为1.73%时发展最激烈;当初始油气浓度较高时,在最大超压峰值附近,会产生压力振荡现象;初始油气浓度对Tulip火焰的形成及发展有较大影响,各种浓度油气的爆炸,都有形成Tulip火焰的趋势;当油气浓度适中时,Tulip火焰会一直传播到管道末端,当油气浓度较高或较低时,火焰锋面会经由鲨鱼嘴形状火焰转变为刀尖形火焰,当初始油气浓度为1.73%时,最容易发展形成Tuilp火焰。  相似文献   

19.
为探究降低可燃气体燃爆危害及后果的技术及方法,本文基于多孔介质的淬火降压特性,开展当量比为1时9.5%甲烷/空气预混气体在滑移多孔介质初始位置70cm下的爆炸特性实验,通过与无装置实验结论对比,结果表明:滑移装置能够延缓“郁金香形”火焰的出现时间,降低火焰最大传播速度,衰减爆炸产生的冲击波和压力,对最大火焰传播速度的衰减可达13.24%,对管内上游峰值超压的最大衰减比例为17.87%,对下游峰值超压的最大衰减比例为24.74%,本实验结果可为火焰二次加速阶段的抑制奠定一定基础。  相似文献   

20.
为研究储油条件下拱顶油罐油气爆炸的发展过程,设计了中尺度拱顶油罐油气爆炸实验台架,并完成了储油条件下油罐油气爆炸试验。实验结果表明:储油条件下油气爆炸会导致罐顶破坏,超压发展分为多个阶段,并出现强烈的超压振荡和二次爆炸现象,最大超压由二次爆炸所产生;爆炸最大超压随着初始油气体积分数的降低而升高;在储油条件下,油罐油气爆炸后会诱导产生二次爆炸现象,第2次爆炸超压峰值和升压速率均远大于第1次爆炸的数值,且二次爆炸对外场的影响更加明显;火焰强度随时间的变化曲线具有2个明显的峰值,其形成原因分别为第1次爆炸和第2次爆炸。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号