首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observing other people's actions facilitates the observer's motor system as compared with observing the same individuals at rest. This motor activation is thought to result from mirror‐like activity in fronto‐parietal areas, which enhances the excitability of the primary motor cortex via cortico‐cortical pathways. Although covert motor activation in response to observed actions has been widely investigated between conspecifics, how humans cope with other species' actions has received less attention. For example, it remains unclear whether the human motor system is activated by observing other species' actions, and whether prior familiarity with the non‐conspecific agent modulates this activation. Here, we combined single‐pulse transcranial magnetic stimulation and motor‐evoked potential recording to explore the impact of familiarity on motor activation during the observation of non‐conspecific actions. Videos displaying actions performed either by a conspecific (human) or by a non‐conspecific (dog) were shown to individuals who had prior familiarity or no familiarity at all with the non‐conspecific agent. We found that, whereas individuals with long‐lasting familiarity showed similar levels of motor activation for human and canine actions, individuals who had no familiarity showed higher motor activation for human than for canine actions. These findings suggest that the human motor system is flexible enough to resonate with other species, and that familiarity plays a key role in tuning this ability.  相似文献   

2.
When we repetitively lift an object, our grip force is influenced by the mechanical object properties of the preceding lift, irrespective of whether the subsequent lift is performed with the same hand or the hand opposite to the preceding lift. This study investigates if repetitive high-frequency transcranial magnetic stimulation (rTMS) over the dominant primary motor cortex affects this relationship. After completion of 10 lifts of an object using the dominant hand, rTMS was applied over the dominant primary motor cortex for 20 s. On the first lift following rTMS, the peak grip force was significantly higher than on the lift preceding rTMS. Moreover, this measure remained elevated throughout the following set of lifts after rTMS. rTMS did not change the peak lift force generated by more proximal arm muscles. The same effect was observed when the lifts following rTMS over the dominant motor cortex were performed with the ipsilateral hand. These effects were not observed when subjects rested both hands on their lap or when a sham stimulation was applied for the same period of time. These preliminary data suggest that rTMS over the sensorimotor cortex disturbs predictive grip force planning.  相似文献   

3.
A large body of research indicates that observing actions made by others is associated with corresponding motor facilitation of the observer's corticospinal system. However, it is still controversial whether this matching mechanism strictly reflects the kinematics of the observed action or its meaning. To test this issue, motor evoked potentials induced by single‐pulse transcranial magnetic stimulation were recorded from hand and leg muscles while participants observed a symbolic action carried out with the index finger, but classically performed with the leg (i.e., a soccer penalty kick). A control condition in which participants observed a similar (but not symbolic) hand movement was also included. Results showed that motor facilitation occurs both in the observer's hand (first dorsal interosseous) and leg (quadriceps femoris) muscles. The present study provides evidence that both the kinematics and the symbolic value of an observed action are able to modulate motor cortex excitability. The human motor system is thus not only involved in mirroring observed actions but is also finely tuned to their symbolic value.  相似文献   

4.
In humans, observation of movement performed by others evokes a subliminal motor resonant response, probably mediated by the mirror neurone system, which reproduces the motor commands needed to execute the observed movement with good spatial and temporal fidelity. Motor properties of the resonant response were here investigated with the ultimate goal of understanding the principles operating in the transformation from observation to internal reproduction of movement. Motor resonance was measured as the modulation of excitability of spinal motoneurones, evoked by the observation of a cyclic flexion-extension of one hand. The first two experiments showed that the observation of a one-hand movement always evoked a bimanual resonant response independent of which hand was observed and that these bilateral responses were consistently phase-linked. H-reflexes simultaneously recorded in right and left flexor carpi radialis muscles were always modulated 'in-phase' with each other. The goal of the third experiment was to define the role of primary motor cortex in the bilateral resonant response. Bilateral H-reflexes were recorded during a temporary inactivation induced by transcranial magnetic stimulation over the left cortical hand motor area of observers. The finding that such cortical depression abolished the H-reflex modulation of only the right flexor carpi radialis motoneurones, leaving it unchanged on the left side, suggested that both primary motor areas were activated by the premotor cortex and transmit the resonant activation through crossed corticospinal pathways. The data provide further evidence that the subliminal activation of motor pathways induced by movement observation is organized according to general rules shared with the control of voluntary movement.  相似文献   

5.
Action observation typically induces an online inner simulation of the observed movements. Here we investigate whether action observation merely activates, in the observer, the muscles involved in the observed movement or also muscles that are typically used to achieve the observed action goal. In a first experiment, hand and foot motor areas were stimulated by means of transcranial magnetic stimulation, while participants viewed a typical hand action (grasping) or a nonspecific action (stepping over an object) performed by either a hand or a foot. Hand motor evoked potentials (MEPs) increased for grasping and stepping over actions performed by the hand and for grasping actions performed by the foot. Conversely, foot MEPs increased only for actions performed by the foot. In a second experiment, participants viewed a typical hand action (grasping a pencil) and a typical foot action (pressing a foot‐pedal) performed by either a hand or a foot. Again, hand MEPs increased not only during the observation of both actions performed by the hand but also for grasping actions performed by the foot. Foot MEPs increased not only during the observation of grasping and pressing actions performed by the foot but also for pressing actions performed by the hand. This evidence indicates that motor activations by action observation occur also in the muscles typically used to perform the observed action, even when the action is executed by an unusual effector, hence suggesting a double coding of observed actions: a strict somatotopic coding and an action goal coding based on the observer's motor expertise. Hum Brain Mapp 35:1750–1760, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
When an object is repetitively lifted, the scaling of grip force is influenced by the mechanical properties of the preceding lift, suggesting the formation of a sensorimotor memory. Similar effects on force scaling are observed when the subsequent lift is performed with the hand opposite to the preceding lift. We used neuronavigated rTMS over the hand area of the dominant primary motor cortex to investigate its role in setting up sensorimotor memory. After ten lifts of a novel object with the dominant hand either rTMS or a period of motor rest commenced, until another set of lifts was performed with either the same or opposite hand. Compared to motor rest, rTMS caused underestimation of the object's weight when given 10 or 30s after the previous set of lifts, but overestimation of the object's weight when applied 60 or 120 s after the previous set of lifts, regardless of the hand performing the lift. Our interpretation of the data is that (a) the primary motor cortex is essential for setting up sensorimotor memory related to the mechanical object properties during manipulation and (b) rTMS can induce bidirectional changes of grip efficiency within the dynamics of sensorimotor integration.  相似文献   

7.
The corticospinal system (CS) is well known to be of major importance for controlling the thumb-index grip, in particular for force grading. However, for a given force level, the way in which the involvement of this system could vary with increasing demands on precise force control is not well-known. Using transcranial magnetic stimulation and functional magnetic resonance imagery, the present experiments investigated whether increasing the precision demands while keeping the averaged force level similar during an isometric dynamic low-force control task, involving the thumb-index grip, does affect the corticospinal excitability to the thumb-index muscles and the activation of the motor cortices, primary and non-primary (supplementary motor area, dorsal and ventral premotor and in the contralateral area), at the origin of the CS. With transcranial magnetic stimulation, we showed that, when precision demands increased, the CS excitability increased to either the first dorsal interosseus or the opponens pollicis, and never to both, for similar ongoing electromyographic activation patterns of these muscles. With functional magnetic resonance imagery, we demonstrated that, for the same averaged force level, the amplitude of blood oxygen level-dependent signal increased in relation to the precision demands in the hand area of the contralateral primary motor cortex in the contralateral supplementary motor area, ventral and dorsal premotor area. Together these results show that, during the course of force generation, the CS integrates online top-down information to precisely fit the motor output to the task's constraints and that its multiple cortical origins are involved in this process, with the ventral premotor area appearing to have a special role.  相似文献   

8.
The observation of an action modulates motor cortical outputs in specific ways, in part through mediation of the mirror neuron system. Sometimes we infer a meaning to an observed action based on integration of the actual percept with memories. Here, we conducted a series of experiments in healthy adults to investigate whether such inferred meanings can also modulate motor cortical outputs in specific ways. We show that brief observation of a neutral stimulus mimicking a hand does not significantly modulate motor cortical excitability (Study 1) although, after prolonged exposure, it can lead to a relatively nonspecific modulation (Study 2). However, when such a neutral stimulus is preceded by exposure to a hand stimulus, the latter appears to serve as a prime, perhaps enabling meaning to the neutral stimulus, which then modulates motor cortical excitability in accordance with mirror neuron‐driving properties (Studies 2 and 3). Overall results suggest that a symbolic value ascribed to an otherwise neutral stimulus can modulate motor cortical outputs, revealing the influence of top‐down inputs on the mirror neuron system. These findings indicate a novel aspect of the human mirror neuron system: an otherwise neutral stimulus can acquire specific mirror neuron‐driving properties in the absence of a direct association between motor practice and perception. This significant malleability in the way that the mirror neuron system can code otherwise meaningless (i.e. arbitrarily associated) stimuli may contribute to coding communicative signals such as language. This may represent a mirror neuron system feature that is unique to humans.  相似文献   

9.
Background Animal and human brain imaging studies suggest that the cerebellum plays an important role in the control of swallowing. In this study, we probed the interaction between cerebellar and pharyngeal motor cortical activity with transcranial magnetic stimulation (TMS) to determine if the cerebellum can modulate cortical swallowing motor circuitry. Methods Healthy volunteers (n = 16, eight men, mean age = 32, range 19–57 years) underwent TMS measurements of pharyngeal electromyography (EMG) recorded from a swallowed intraluminal catheter to assess cortical and cerebellar excitability. Subjects then underwent a paired pulse paradigm, where active or sham TMS conditioning pulses over the cerebellum and control sites were followed by suprathreshold TMS over the cortical pharyngeal area. Paired pulses were delivered at varying inter‐stimulus intervals (ISIs) with the cortical response amplitudes being assessed. Key Results Stimulation of the cerebellum over its midline or hemispheres evoked distinct pharyngeal EMG responses. There was no difference in EMG amplitudes following cerebellar hemispheric or midline stimulation (mean 55.5 ± 6.9 vs 42.8 ± 5.9 μV, P = 0.08). In contrast, after cerebellar preconditioning, the cortically evoked responses underwent maximal facilitation at ISIs of 50–200 ms (P < 0.05), an effect not seen with sham or trigeminal nerve preconditioning. Conclusions & Inferences Posterior fossa stimulation excites the cerebellum and evokes direct motor responses within the pharynx. When conditioned with TMS, the cerebellum strongly facilitates the cortical swallowing motor pathways. This finding suggests that the cerebellum exerts a modulatory effect on human swallowing and raises the possibility that excitatory neurostimulation of the cerebellum may be therapeutically useful in promoting recovery of dysphagia after neural damage.  相似文献   

10.
The precise mechanisms of how speech may have developed are still unknown to a large extent. Gestures have proven a powerful concept for explaining how planning and analysing of motor acts could have evolved into verbal communication. According to this concept, development of an action-perception network allowed for coding and decoding of communicative gestures. These were manual or manual/articulatory in the beginning and then became increasingly elaborate in the articulatory mode. The theory predicts that listening to the 'gestures' that compose spoken language should activate an extended articulatory and manual action-perception network. To examine this hypothesis, we assessed the effects of language on cortical excitability of the hand muscle representation by transcranial magnetic stimulation. We found the hand motor system to be activated by linguistic tasks, most notably pure linguistic perception, but not by auditory or visuospatial processing. The amount of motor system activation was comparable in both hemispheres. Our data support the theory that language may have evolved within a general and bilateral action-perception network.  相似文献   

11.
12.
Right prefrontal TMS versus sham treatment of mania: a controlled study   总被引:2,自引:0,他引:2  
Objective:  Left prefrontal transcranial magnetic stimulation (TMS) has been reported to have ECT-like effects in depression and we therefore planned a study of TMS in mania. Sixteen patients completed trial of right versus left prefrontal TMS at 20 Hz, 2-sec duration per train, 20 trains per day for 10 treatment days. Mania was evaluated using the Mania Scale, the Brief Psychiatric Rating Scale and the Clinical Global Impression. Significantly more improvement was observed in patients treated with right prefrontal TMS than with left prefrontal. We now report a follow-up study of right active TMS versus right sham TMS with the same indications and parameters.
Methods:  Twenty-five patients entered and 19 completed right TMS versus sham right TMS.
Results:  Right TMS was no more effective than sham TMS.
Conclusions:  It is possible that the previous results were due to an effect of left TMS to worsen mania. Alternatively, it is noted that the present patient group had much more psychosis than the previous study of TMS in mania, and depression studies have reported that psychosis is a poor prognostic sign for TMS response.  相似文献   

13.
Objectives:  Repetitive transcranial magnetic stimulation (rTMS) has been shown to improve depressive symptoms. We designed and carried out the following left prefrontal rTMS study to determine the safety, feasibility, and potential efficacy of using TMS to treat the depressive symptoms of bipolar affective disorder (BPAD).
Methods:  We recruited and enrolled 23 depressed BPAD patients (12 BPI depressed state, nine BPII depressed state, two BPI mixed state). Patients were randomly assigned to receive either daily left prefrontal rTMS (5 Hz, 110% motor threshold, 8 sec on, 22 sec off, over 20 min) or placebo each weekday morning for 2 weeks. Motor threshold and subjective rating scales were obtained daily, and blinded Hamilton Rating Scale for Depression (HRSD) and Young Mania Rating Scales (YMRS) were obtained weekly.
Results:  Stimulation was well tolerated with no significant adverse events and with no induction of mania. We failed to find a statistically significant difference between the two groups in the number of antidepressant responders (>50% decline in HRSD or HRSD <10 – 4 active and 4 sham) or the mean HRSD change from baseline over the 2 weeks ( t =−0.22, p=0.83). Active rTMS, compared with sham rTMS, produced a trend but not statistically significant greater improvement in daily subjective mood ratings post-treatment ( t =1.58, p=0.13). The motor threshold did not significantly change after 2 weeks of active treatment ( t =1.11, p=0.28).
Conclusions:  Daily left prefrontal rTMS appears safe in depressed BPAD subjects, and the risk of inducing mania in BPAD subjects on medications is small. We failed to find statistically significant TMS clinical antidepressant effects greater than sham. Further studies are needed to fully investigate the potential role, if any, of TMS in BPAD depression.  相似文献   

14.
An important aspect of human motor control is the ability to resolve conflicting response tendencies. Here we used single-pulse transcranial magnetic stimulation (TMS) to track the time course of excitability changes in the primary motor hand areas (M1HAND) while the motor system resolved response conflicts. Healthy volunteers had to respond fast with their right and left index fingers to right- and left-pointing arrows. These central target stimuli were preceded by flanking arrows, inducing premature response tendencies which competed with correct response activation. The time point of maximum premature activation was individually measured as peak latency of the lateralized readiness potential (LRP) in the EEG. In the subsequent TMS experiment, single pulses were applied to left or right M1HAND during the same flanker task. The amplitude of the motor evoked potentials in the contralateral first dorsal interosseus muscle was taken as an index of corticospinal excitability. Guided by the previous LRP measurement, magnetic stimuli were applied 0–90 ms after the individual LRP peak, to cover the epoch of conflict resolution. When flankers were incompatible with the target, excitability of the prematurely activated M1HAND gradually decreased during this 90 ms period. This decrease was paralleled by a mirror-symmetrical increase in excitability in the other M1HAND. These results show that the inappropriate response tendency is cancelled in one M1HAND simultaneously with activation of the correct response in the other. This integrated implementation of response activation and cancellation at the level of the M1HAND presumably represents a downstream effect orchestrated by premotor brain regions.  相似文献   

15.
16.
Twelve patients with early Parkinson's disease (PD), none of whom had received any previous L-DOPA treatment, but using other antiparkinsonian drugs, were studied using transcranial magnetic stimulation (TMS). Contralateral and ipsilateral hemispheres were examined, with a focus on the more pronounced parkinsonian symptoms. The conditioning-test TMS paradigm (with a subthreshold conditioning stimulus and a suprathreshold test stimulus) was used through a stimulating round coil. Paired stimuli of short (3, 5 and 7 ms), medium (10, 15 and 20 ms), and long (100, 150, 200 and 250 ms) interstimulus intervals (ISI) were pseudo-randomly mixed with a single stimulus. The first interosseus muscle was used for the motor-evoked potential recordings. Ten healthy subjects (age and sex matched) were studied in the same manner to obtain normative data. When both groups were compared, the significant difference (reduction of the intracortical inhibition and facilitation) between the PD patients and the control group was found at the short and the medium ISI (3, 5, 7, 10, 15 and 20 ms) in both hemispheres (P < 0.05). The longer ISI produced non-significant differences between the two groups in intracortical excitability. There was a non-significant difference in the motor threshold. In conclusion, it can be supposed that both intracortical inhibition and facilitation are impaired in patients with early PD using other antiparkinsonian treatments than L-DOPA or dopamine agonists.  相似文献   

17.
Background We sought to find the therapeutic effect of 5Hz high‐frequency repetitive transcranial magnetic stimulation (rTMS) over the unaffected pharyngeal motor cortex in post‐stroke dysphagic patients. Methods Eighteen patients with unilateral hemispheric stroke oropharyngeal dysphagia that lasted more than 1 month were randomly divided into two groups. They all performed videofluoroscopic swallowing study (VFSS) before rTMS intervention. The experimental group (EG) received 5Hz rTMS over contra‐lesional pharyngeal motor cortex for 10 min per day for 2 weeks. The control group (CG) received sham stimulation under the same condition. Videofluoroscopic swallowing study were performed again just after treatment cessation and 2 weeks afterward. The evaluation was performed using videofluoroscopic dysphagia scale (VDS) and penetration‐aspiration scale (PAS). Key Results Mean baseline VDS and PAS of EG was 33.6 ± 12.1 and 3.41 ± 2.32 respectively and the scores were reduced to 25.3 ± 9.8 and 1.93 ± 1.52 just after 2 weeks intervention (P < 0.05). This effect lasted for up to 2 weeks after treatment. However, there was no change in the CG. Baseline prevalence of aspiration, pharyngeal residue, delayed triggering of pharyngeal swallowing and abnormal pharyngeal transit time (PTT) in EG was 66.7%, 66.7%, 33.3%, and 44.4%, respectively. After rTMS, the prevalence of aspiration and pharyngeal residue was reduced to 33.3% and 33.3%, respectively. However, the prevalence of delayed triggering and abnormal PTT was not changed. Conclusions & Inferences A 5Hz high‐frequency rTMS on contra‐lesional pharyngeal motor cortex might be beneficial for post‐stroke dysphagic patients. This intervention can be used as a new treatment method in post‐stroke patients with dysphagia.  相似文献   

18.
Several methods can be used to determine the resting motor threshold (RMT) and by that recording transcranial magnetic stimulation (TMS) induced motor evoked potentials (MEPs). However, no research has compared the test retest reliability of these methods. Thus, the aim of this study was to determine intra‐ and inter‐session reliability of Rossini–Rothwell (R–R) and parameter estimation by sequential testing (PEST) methods on TMS‐induced MEPs and comparison of these two methods on RMT. Twelve healthy individuals participated in this study three times (T1, T2 and T3) over two days. TMS was applied using both R–R and PEST to estimate RMT and average of 25 MEPs were acquired at each of the three time points. The intra‐class correlation coefficient indicated high intra‐session reliability in the MEP amplitudes for both methods (0.79 and 0.88, R–R and PEST respectively). The RMT and MEP amplitudes had higher inter‐session reliability in both methods (0.99 and 0.998, R–R and PEST respectively; 0.84 and 0.76, R–R and PEST respectively). There was no significant difference between methods for RMT at both T1 (maximum stimulator output of R–R vs. PEST, 33.7% ± 7.7% vs. 33.8% ± 7.6%, p = 0.75) and T3 (maximum stimulator output of R–R vs. PEST, 33.5% ± 7.3% vs. 33.7% ± 7.3%, p = 0.19). There was a significant positive correlation between the methods' estimates of RMT, with PEST requiring significantly fewer stimuli. This study shows that the R–R and PEST methods have high intra‐and inter‐session reliability and the same precision, with PEST having the advantage over R–R in speed of estimation of RMT.  相似文献   

19.
Twelve right-handed volunteers were asked to judge the laterality of a hand stimulus by pressing a button with one of their toes. Judgements were based on two-dimensional drawings of the back or palm of a right or left hand at various orientations. Suprathreshold single-pulse transcranial magnetic stimulation (TMS) was given to the left primary motor hand area (M1-HAND) at 0, 200, 400, 600, 800 or 1000 ms after stimulus onset to probe the functional involvement of the dominant left M1 at various stages of handedness recognition. We found that mean reaction times and error rates increased with angle of rotation depending on the actual biomechanical constraints of the hand but suprathreshold TMS had no influence on task performance regardless of the timing of TMS. However, the excitability of the corticomotor output from the left M1-HAND was modulated during the reaction. Judging left hand drawings was associated with an attenuation of motor-evoked potentials 300-100 ms before the response, whereas judging right hand drawings facilitated the motor-evoked potentials only immediately before the response. These effects were the same for pictures of backs and palms and were independent of the angle of rotation. The failure of TMS to affect task performance suggests that there is no time window during which the M1-HAND makes a critical contribution to mental rotation of the hand. The modulation of motor-evoked potentials according to the laterality of the stimulus indicates a secondary effect of the task on corticomotor excitability that is not directly related to mental rotation itself.  相似文献   

20.
OBJECTIVES: In order to learn more about the physiology of the motor cortex during motor imagery, we evaluated the changes in excitability of two different hand muscle representations in the primary motor cortex (M1) of both hemispheres during two imagery conditions. MATERIALS AND METHODS: We applied focal transcranial magnetic stimulation (TMS) over each M1, recording motor evoked potentials (MEPs) from the contralateral abductor pollicis brevis (APB) and first dorsal interosseus (FDI) muscles during rest, imagery of contralateral thumb abduction (C-APB), and imagery of ipsilateral thumb abduction (I-APB). We obtained measures of motor threshold (MT), MEP recruitment curve (MEP-rc) and F waves. RESULTS: Motor imagery compared with rest significantly decreased the MT and increased MEPs amplitude at stimulation intensities clearly above MT in condition C-APB, but not in condition I-APB. These effects were not significantly different between right and left hemisphere. MEPs simultaneously recorded from the FDI, which was not involved in the task, did not show facilitatory effects. There were no significant changes in F wave amplitude during motor imagery compared with rest. CONCLUSIONS: Imagery of unilateral simple movements is associated with increased excitability only of a highly specific representation in the contralateral M1 and does not differ between hemispheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号