首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The tropical seagrass Halophila stipulacea is dominant in most regions of the Indo‐Pacific and the Red Sea and was introduced into the Mediterranean Sea after the opening of the Suez canal. The species is considered invasive in the Mediterranean Sea and has been progressively colonizing new areas westward. Growth and photosynthetic responses of H. stipulacea have been described but no information is yet available on the nitrogen nutrition of the species. Here we simultaneously investigated the uptake kinetics of ammonium and nitrate and the internal translocation of incorporated nitrogen in H. stipulacea using 15N‐labelled substrates across a range of Ni levels (5, 25, 50 and 100 μm ). The ammonium uptake rates exceeded the nitrate uptake rates 100‐fold, revealing a limited capacity of H. stipulacea to use nitrate as an alternative nitrogen source. The uptake rates of ammonium by leaves and roots were comparable up to 100 μm 15NH4Cl. At this concentration, the leaf uptake rate was 1.4‐fold higher (6.22 ± 0.70 μmol·g?1 DW h?1) than the root uptake rate (4.54 ± 0.28 μmol·g?1 DW h?1). The uptake of ammonium followed Michaelis–Menten kinetics, whereas nitrate uptake rates were relatively constant at all nutrient concentrations. The maximum ammonium uptake rate (Vmax) and the half‐saturation constant (Km) of leaves (9.79 μmol·g?1 DW h?1 and 57.95 μm , respectively) were slightly higher than that of roots (6.09 μmol·g?1DW h?1 and 30.85 μm , respectively), whereas the affinity coefficients (α = Vmax/Km) for ammonium of leaves (0.17) and roots (0.20) were comparable, a characteristic that is unique among seagrass species. No substantial translocation (<2.5%) of 15N incorporated as ammonium was detected between plant parts, whereas the translocation of 15N incorporated as nitrate was higher (40–100%). We conclude that the Ni acquisition strategy of H. stipulacea, characterized by a similar uptake capacity and efficiency of leaves and roots, favors the geographical expansion potential of the species into areas with variable water‐sediment N levels throughout the Mediterranean.  相似文献   

2.
为探讨海马齿(Sesuvium portulacastrum)对水域环境修复作用,本文研究了水培海马齿对不同盐度水质的碳汇作用以及不同形态氮的利用情况。实验设计0、10、20、30、35盐度梯度,海马齿水培时间82 d,然后测定植株干重、营养元素含量以及积累速率,最后在抑菌与不抑菌条件下研究海马齿根际与铵态氮(NH4+-N)、硝态氮(NO3--N)、无机磷(PO43-)以及色氨酸(Trp)吸收转化关系。研究结果表明,盐度10条件下海马齿植株干重、有机元素含量以及积累速率最高,有机碳、有机氮与有机磷积累速率分别为(5.572±1.611)、(0.313±0.058)、(0.057±0.013)mg/(d·ind.),而高盐环境35盐度条件下对海马齿生长造成一定胁迫。盐度0~35范围,海马齿均未出现死亡现象。不同盐度抑菌培养条件下,色氨酸与无机氮共存时均能被能被海马齿利用,色氨酸利用量远高于硝态氮、铵态氮;不抑菌条件下铵态氮则表现出增加的结果。海马齿作用在盐度...  相似文献   

3.
The ability of cultured zooxanthellae to use ammonium and nitrate was tested. The zooxanthellae were initially isolated from the anemone Aiptasia pulchella. The zooxanthellae were able to grow on media supplemented with either form of dissolved inorganic nitrogen (DIN) although ammonium was inhibitory above 300 μM. In accord with the intact symbiosis and freshly isolated algae, the cultured zooxanthellae took up ammonium. In contrast, the cultured algae demonstrated nitrate uptake and utilization. This was enhanced with DIN deprivation. Nitrate reductase was found in the algae and appeared to be inducible. Within the animal host, excretory ammonium may repress this induction.  相似文献   

4.
The size-related activities of important heterotrophs and autotrophs were compared at the surface and at the subsurface chlorophyll maximum (Chlmax) in Agulhas Bank waters. The netplankton fraction was dominated by Nitzschia spp. and ciliates, small (diameter c. 3μm) microflagellates being the most abundant nanoplankton group. Uptake ratios of ammonium to phosphate for the total microplankton community were different at the two depths. With reference to the Redfield ratio, it appears that at least 48 per cent of the nitrogen ration at the Chlmax was regenerated even though nitrate was in ample supply. These assimilation ratios also suggest a very large contribution from recycled nitrogen other than ammonium in surface waters. It is unlikely that phosphorus would ever become limiting, except perhaps at the primary production maximum. Microplankton uptake and regeneration of both ammonium and phosphorus were approximately in balance, indicating that variations in assimilation ratios were the result of heterotrophic excretory activity. The size-fractionation studies show that picoplankton were on average the single most important size class in nutrient assimilation. The netplankton size class was, in terms of regeneration, often the most active in the microplankton community especially within the Chlmax. Heterotrophic microflagellates and picoplankton supplied the bulk of ammonium and phosphorus at the surface. The importance of a particular size class to either ammonium or phosphorus uptake/excretion was quantified as a relative assimilation/regeneration index. These calculations demonstrate size-related differences in the relative importance of the microplanktonic groups to the immobilization and recycling of different nutrients.  相似文献   

5.
蒋鹏  赵春贵  杨素萍 《海洋与湖沼》2014,45(6):1218-1224
采用高浓度无机三态氮(铵氮4NH?-N、亚硝氮2NO?-N和硝氮3NO?-N)共存的模拟海水体系,在最适生长条件下,研究了小分子有机物(糖类、有机酸、醇、有机氮)和p H对海洋着色菌(Marichromatium gracile)YL28去除水体无机三态氮的影响。结果表明:以葡萄糖、乙酸钠和乙醇为唯一碳源时,水体中的高浓度2NO?-N和3NO?-N均能被完全去除,4NH?-N的去除率分别为93.40%、84.55%和66.63%;碳源为乙酸钠时菌体生长最好,体系中添加蛋白胨或尿素,仅4NH?-N的去除效果明显降低。p H值在6.0—9.0时,该菌株对4NH?-N、2NO?-N和3NO?-N均具有去除能力。由此可知:YL28菌株对模拟海水养殖水体中高浓度无机三态氮具有良好的去除能力,高浓度有机氮化物(蛋白胨和尿素)对4NH?-N的去除能力有明显影响,但对2NO?-N和3NO?-N仍保持高效的去除能力。本研究为不产氧光合细菌制剂在水产养殖中的合理应用提供参考。  相似文献   

6.
为了高效进行水体脱氮,本实验从形成于凡纳滨对虾(Litopenaeus vannamei)养殖水体的生物絮团中分离到一株具产絮能力的脱氮菌xt1,经16S r RNA基因测序与生理生化分析确定菌株xt1为短小芽孢杆菌(Bacillus pumilus)。在此基础上,本文研究了该菌的脱氮特性。结果表明:菌株xt1最佳碳源为葡萄糖,以其为底物对氨氮、硝态氮去除率分别达95.56%和57.40%。以蔗糖为碳源亦具较高脱氮率,对氨氮、硝态氮去除率分别达69.95%和49.50%;该菌能利用有机氮加速生长,添加0.25%、0.5%、1%和2%的蛋白胨能促进OD600,分别达到0.925、1.034、1.103和1.314,均高于未加蛋白胨下的生长,且氨氮去除率均超过90%,硝态氮去除率均超过88%;该菌能适应20—200mg/L无机氮浓度;该菌能以NH4+-N、NO2–-N或NO3–-N为唯一氮源进行异养硝化-好氧反硝化,反应84h去除率分别达到94.16%、47.60%和91.17%。其中,该菌的硝化形式是将氨氮转化为气态氮脱除,其硝态氮反硝化形式是先将硝态氮转化为亚硝氮,再以气态氮脱除。在进行异养硝化-好氧反硝化同时,菌株xt1体现絮凝特性,絮凝率最高分别达到82.28%、73.15%和75.60%;此外,添加该菌于养殖水体中能加速生物絮团形成,同时提高脱氮率。各项结果表明,菌株xt1可作为水产养殖水体脱氮的备选菌株。  相似文献   

7.
Chattonella antiqua was grown in a nitrogen- or phosphorus-limited semicontinuous culture system. Using the cells in steady growth state, the relationship between growth rate and cell quota and effects of growth conditions on nitrate, ammonium and phosphate uptake were examined. Under nitrogen-limited conditions, growth rate as a function of nitrogen cell quota followed the empirical Droop equation and the uptake of nitrate and ammonium was not significantly affected by growth rate. Similarly, under phosphorus-limited conditions, the growth rate as a function of phosphorus cell quota also followed the Droop equation and phosphate uptake was not significantly affected by growth rate.Combining the results obtained in the present study with those from previous studies on nutrient uptake, half saturation constants for growth (K g ) were calculated for nitrate, ammonium and phosphate. Comparisons ofK g with nutrient concentrations in the Seto Inland Sea in summer, where red tides ofC. antiqua often occur, suggest that phosphate is one of the controlling factors for the population ofC. antiqua.  相似文献   

8.
Uptake of inorganic carbon and ammonium by the plankton community of three North Carolina estuaries was measured using 14C and 15N isotope methods. At 0% light, C appeared to be lost via respiration, and at increasing light levels uptake of inorganic carbon increased linearly, saturated (mean Ik = 358±30 μEin m−2 s−1), and frequently showed inhibition at the highest light intensities. At 0% light NH4+ uptake was significantly greater than zero and was frequently equivalent to uptake in the light (light independent); at increasing light levels NH4+ uptake saturated (mean Ik = 172±44 μEin m−2 s−1) and frequently indicated strong inhibition. Light-saturated uptake rates of inorganic carbon and NH4+ were a function of chlorophyll a (r2 = 0·7−0·9); average assimilation numbers were 625 nmol CO2 (μg chl. a)−1 h−1 and 12·9 nmol NH4+ (μg chl. a)−1 h−1 and were positively correlated with temperature (r2 = 0·3−0·7). The ratio of dark to light-saturated NH4+ uptake tended to be near 1·0 for large algal populations at low NH4+ concentrations, indicating near light independence of uptake; whereas the ratio was lower for the opposite conditions. These data are interpreted as indicative of nitrogen stress, and it is suggested that uptake of NH4+ deep in the euphotic zone and at night are mechanisms for balancing the C:N of cellular pools. A 24-h study using summed short-term incubations confirmed this; the cumulative C:N of CO2 and NH4+ uptake during the daylight period was 10–20, whereas over the 24-h period the ratio was 6 due to dark NH4+ uptake. Annual carbon and nitrogen primary productivity were respectively estimated as 24 and 4·0 mol m−2 year−1 for the South River estuary, 42 and 7·3 mol m−2 year−1 for the Neuse River estuary, and 9·6 and 1·6 mol m−2 year−1 for the Newport River estuary.  相似文献   

9.
Maintaining stable water quality is one of the key processes for recirculating coral aquaculture. Traditional aquarium systems which mainly utilized a nitrification of nitrifying bacteria attached to the surface of massive artificial filter material are difficult to maintain the oligotrophic conditions necessary for coral aquaculture. This study investigated the removal effects of dissolved inorganic nitrogen(ammonia and nitrate) by live rock(LR), a key component in the "Berlin system" coral aquarium. The expression levels of bacterial functional genes, AOA3,amo A and nos Z, were measured on the exterior and interior of LR. The nitrifying and denitrifying bacterial abundance on LR was quantified and the nitrogen nutrient regulatory effects of LR were evaluated. The results demonstrated that LR mainly removed ammonium(NH_4~+) from the water with a mean efficiency of 0.141 mg/(kg·h), while the removal of nitrate(NO_3~–) was not significant. Bacterial diversity analysis showed that ammonia-oxidizing bacteria(AOB) were the most common bacteria on LR, which accounted for 0.5%–1.4% of the total bacterial population, followed by denitrifying bacteria, which accounted for 0.2% of the total population, and the ammonia-oxidizing archaea(AOA) were the least common type(0.01%). The low abundance of denitrifying bacteria may be responsible for the poor nitrate(NO_3~–) removal of LR. Thus, other biological filtration methods are needed in coral aquaria to control nitrates generated from nitrification or biological metabolism.  相似文献   

10.
On the basis of mass balance calculations performed for nitrogen (N) uptake experiments in the Southern California Bight (SCB), it has been suggested that a significant portion of dissolved inorganic N (DIN) uptake results in the production of dissolved organic N (DON). To investigate this process, the fate of ammonium (NH4+) and nitrate (NO3) uptake was quantified within the euphotic zone at three coastal stations in the SCB using 15N tracer techniques. Several trends in the fate of DIN and the production of DON were observed. First, production of particulate N (PN), from both NH4+ and NO3, was quantitatively more important in near surface waters, while DON release dominated within the nitracline. Second, the percentage of gross N uptake released as DON was generally higher when NO3, rather than NH4+, was the substrate. Third, the percentage of N released as DON was higher at night, relative to the day. Fourth, rates of DON release were significantly correlated to NH4+ regeneration, suggesting that similar mechanisms are responsible for both processes—presumably grazing. The results of this study indicate that the DON pool is a sink for DIN uptake on the time scale of hours. One implication of this finding is that new production estimates based on 15NO3 uptake rates will likely underestimate particle flux out of the surface layer because the rate of NO3 uptake is underestimated due to loss of DO15N during the incubation. On time scales of months to years, however, the N that is taken up as NO3 and released as DON will likely contribute to export flux via incorporation of the dissolved phase during seasonal mixing into sinking particles or transport. The export of DON on these time scales argues for the use of gross uptake rates to calculate f-ratios.  相似文献   

11.
朱明  刘峰  陈璐  刘兆普 《海洋与湖沼》2018,49(5):975-982
我国黄海出现的绿潮发源于黄海南部苏北辐射沙洲紫菜养殖区,苏北沙洲区濒临的沿岸河网众多,来自沿岸径流的淡水携带大量氮磷等营养盐间歇性入海,导致海水的富营养化并伴随着盐度的周期性波动。本研究通过模拟实验研究低盐度(15和5)对浒苔吸收氮盐(NO_3~–-N和NH_4~+-N)和磷盐(PO_4~(3–)-P)的影响,主要发现:与盐度30相比,在低盐度(15和5)时,浒苔对NO_3~–-N的1h最大吸收速率(V_(max))和亲和力(V_(max)/Ks)分别提高280%和350%左右,半饱和常数(Ks)下降15%左右,并能够维持对NO_3~–-N的高效吸收(24h);盐度15和5时,浒苔对NH_4~+-N的1h最大吸收速率(V_(max))分别提高40%和200%,亲和力(V_(max)/Ks)分别提高20%和180%, Ks分别提高15%和30%,但是盐度降低对NH_4~+-N的长效吸收产生负面影响,甚至在盐度5条件下出现吸收高浓度NH_4~+-N后再释放的现象;与盐度30相似,盐度15条件下浒苔能够快速吸收PO_4~(3–)-P,而盐度5则导致藻细胞内的PO_4~(3–)-P在早期阶段快速流失,并在后期不能有效吸收PO_4~(3–)-P。本实验的结果表明,降低盐度有利于浒苔对氮源的快速吸收,在盐度15下浒苔能够实现对硝酸盐和磷盐的高效吸收。  相似文献   

12.
13.
Capacities for inorganic carbon, nitrate and ammonium uptake were measured around Hachijo Island, 300 km south of Tokyo, where local upwelling occurred. The phytoplankton population inside the upwelling area had a high capacity for nitrate uptake and a low capacity for uptake of ammonium. Nutrient concentration and phytoplankton biomass were higher in the upwelling plume than outside. On a chlorophylla basis, phytoplankton populations inside the upwelling area showed a lower capacity for carbon and nitrogen uptake than those outside the upwelling. Low temperature, relatively limited availability of light caused by extensive water mixing within the upwelling plume, and the difference in species composition of phytoplankton must be considered in explaining these lower uptake capacities.  相似文献   

14.
施肥对盐沼沉积物微生物生物量和细菌群落组成的影响   总被引:1,自引:1,他引:0  
The effects of nitrogen(N) addition on microbial biomass, bacterial abundance, and community composition in sediment colonized by Suaeda heteroptera were examined by chloroform fumigation extraction method, real-time quantitative polymerase chain reaction, and denaturing gradient gel electrophoresis(DGGE) in a salt marsh located in Shuangtai Estuary, China. The sediment samples were collected from plots treated with different amounts of a single N fertilizer(urea supplied at 0.1, 0.2, 0.4 and 0.8 g/kg(nitrogen content in sediment) and different forms of N fertilizers(urea,(NH_4)_2SO_4, and NH_4NO_3, each supplied at 0.2 g/kg(calculated by nitrogen).The fertilizers were applied 1–4 times during the plant-growing season in May, July, August, and September of 2013. Untreated plots were included as a control. The results showed that both the amount and form of N positively influenced microbial biomass carbon, microbial biomass nitrogen, and bacterial abundance. The DGGE profiles revealed that the bacterial community composition was also affected by the amount and form of N.Thus, our findings indicate that short-term N amendment increases microbial biomass and bacterial abundance,and alters the structure of bacterial community.  相似文献   

15.
Primary production was measured during two Lagrangian experiments in the Iberian upwelling. The first experiment, in a body of upwelled water, measured day-to-day changes in phytoplankton activity as the water mass moved south along the shelf break. Nutrient concentrations decreased over a five day period, with concomitant increases in phytoplankton biomass. Initially the maximum phytoplankton biomass was in the upper 10m but after four days, a sub-surface chlorophyll maximum was present at 30m. Depth-integrated primary production at the beginning of the experiment was 70mmolC.m−2.d−1 (838mgC.m−2.d−1) and reached a maximum of 88mmolC.m−2.d−1 (1053mgC.m−2.d−1) on day 3. On day 1, the picoplankton fraction (<2μm) was slightly more productive than larger (>5μm) phytoplankton, but the increase in overall production during the drift experiment was by these larger cells. Nitrate was the dominant nitrogen source. As nutrient concentrations declined, ammonium became increasingly more important as a nitrogen source and the f-ratio decreased from 0.7 to 0.5. Picoplankton cells (<2μm) were responsible for most (65–80%) of the ammonium uptake. The C:N:P uptake ratios were very close to the Redfield ratio for the first four days but as nutrients became depleted high C:N uptake ratios (11 to 43) were measured. Over the period of the experiment, nitrate concentration within the upper 40m decreased by 47.91mmolN.m−2. In vitro estimates, based on 15N nitrate uptake, accounted for 56% of the decrease in nitrate concentration observed in the drifting water mass. Ammonium uptake over the same four day period was 16.28mmolN.m−2, giving a total nitrogen uptake of 43.18mmolN.m−2.In the second experiment, an offshore filament was the focus and a water mass was sampled as it moved offshore. Nutrient concentrations were very low (nitrate was <10nmol l−1 and ammonium was 20–40nmol l−1). Primary production rate varied between 36mmolC.m−2.d−1 (436mgC.m−2.d−1) and 21mmolC.m−2.d−1 (249mgC.m−2.d−1). Picophytoplankton was the most productive fraction and was responsible for a constant proportion (ca 0.65) of the total carbon fixation. Uptake rates of both nitrate and ammonium were between 10 and 20% of those measured in the upwelling region. Urea could be a very significant nitrogen source in these waters with much higher uptake rates than nitrate or ammonium; urea turnover times were ca. one day but the source of the urea remains unknown. Urea uptake had a profound effect on calculated f ratios. If only nitrate and ammonium uptake was considered, f ratios were calculated to be 0.42–0.46 but inclusion of urea uptake reduced the f ratio to <0.1. The primary production of this oligotrophic off-shore filament was driven by regenerated nitrogen.  相似文献   

16.
To elucidate the sources and transformations of nitrogen in the South China Sea (SCS), the nitrogen isotopic composition of nitrate (\({\updelta }^{ 1 5} {\text{N}}_{{{\text{NO}}_{ 3} }}\)) was measured in seawater samples from the water column of this marginal sea and the adjacent western North Pacific Ocean (WNP). Comparison of the isotopic signatures from these two locations suggests that the main source of nitrogen into the SCS was nitrate that entered from the WNP through the Luzon Strait. Values of \({\updelta }^{ 1 5} {\text{N}}_{{{\text{NO}}_{ 3} }}\) were generally lower in the SCS than in the WNP, and the \({\updelta }^{ 1 5} {\text{N}}_{{{\text{NO}}_{ 3} }}\) maximum observed in the SCS intermediate water was lower than the corresponding WNP maximum. This pattern is attributed to mixing within the SCS in combination with the outflow of SCS intermediate water to the WNP. A mass balance model indicates that atmospherically derived N (a combined input of new nitrogen from marine N2 fixation and atmospheric deposition) supplied approximately 6% of the particulate nitrogen exported from the euphotic zone to the deep SCS. This supply of isotopically light nitrogen cannot, however, explain the low and downward-decreasing δ15N that has been previously observed in sinking particles of the deep SCS. We propose that an alternative explanation might be a downward-increasing ratio of isotopically light NH4 +-N to organic N due to the degradation of organic N within the sinking particles (i.e., relative enrichment of the NH4 +) and also particle incorporation of excreted ammonium from zooplankton.  相似文献   

17.
Measurements of nitrogen fixation (acetylene reduction) showed greatest rates in the saltmarsh pans with a benthic layer of cyanobacteria present. The smallest amount of nitrogen fixation occurred on the marsh surface where a Puccinellia maritima/Halimione portulacoides plant association shaded the underlying sediment. Phototrophic nitrogen fixation was always greater than dark, chemotrophic, bacterial fixation.Only a small proportion of the total amount of ammonium, which was formed during detrital breakdown, was nitrified to nitrate. Although there is a high capacity for bacterial nitrate reduction in these sediments, the process is limited by low nitrate availability and most nitrate upon reduction is converted to ammonium rather than being denitrified to gaseous products. Denitrification does not, therefore, result in any great loss of nitrogen from the saltmarsh.There was little net import or export of nitrogen on an annual basis, although nitrate and organic-N in small particulate material was removed from tidal water by the marsh, and there was net annual export of ammonium, dissolved organic-N and organic-N in large particulate material. Losses of nitrogen by the small net tidal export and by denitrification were approximately balanced by nitrogen fixation. It was concluded that the nitrogen cycle of the Colne Point saltmarsh was balanced on an annual basis, with most nitrogen being recycled within the marsh. The saltmarsh did not apparently act as a net source of nitrogen for the adjacent estuary, although it may act as an important processor of nitrogen, removing some forms of nitrogen such as nitrate from tidal water while exporting other forms of nitrogen such as dissolved organic-N.  相似文献   

18.
Phytoplankton NH4+ and NO3 uptake was examined along the longitudinal salinity gradient of the Delaware Estuary over several seasonal cycles using 15N-tracer techniques. Saturated nitrogen uptake rates increased directly with water temperature and reached a maximum of 380 nmol Nl−1h−1 during summer. This temperature dependence was related primarily to changes in the rate of maximum chlorophyll specific uptake, which varied exponentially between 2 and 70 nmol N [μg Chl h]−1 over a temperature range of 2–28°C. Despite these high uptake rates, balanced growth (C:N7:1) could be maintained over the diel light cycle only by highly efficient nitrogen uptake at low light intensities and dark uptake below the photic zone and at night (dark UPTAKE=25% maximum uptake).Ammonium fulfilled 82% of the annual phytoplankton nitrogen demand in the estuary despite dominance of NO3 in the ambient dissolved inorganic nitrogen pool. The predominance of NH4+ uptake occurred because of the general suppression of NO3 assimilation at NH4+ concentrations in excess of 2 μ . This suppression, however, was not as universal as has been reported for other systems, and it is suggested that the extremely high NO3 concentrations found in the estuary contribute to this pattern. Nitrate was a significant source of nitrogen only during periods of high phytoplankton production in summer, and when NH4+ concentrations were low towards the end of the spring bloom.  相似文献   

19.
Nitrate and ammonium uptake rates were measured during a series of cruises in the well-mixed region of the southern North Sea from February to September. Water column-integrated uptake rates ranged between 0.01 and 8.7 mmol N m−2 d−1 and 0.01 and 12.2 mmol N m−2 d−1 for nitrate and ammonium, respectively, with ammonium uptake dominating after the phytoplankton spring bloom in May. A moored buoy continuously measuring nitrate and chlorophyll a and seabed current meters were also deployed in the central southern North Sea in the region of the East Anglian plume—a permanent physical feature which transports nutrients towards continental Europe. This enabled the flux of water and hence of nutrients across the southern North Sea to be determined and an assessment of the contribution of freshwater nutrients to the flux to be made. A simple box model is developed to relate the phytoplankton uptake of nitrate and ammonium to the transport of nitrate, ammonium and particulate organic matter (POM) across the southern North Sea. This showed the importance of the plume region of the North Sea in the processing of nitrogen, with nitrate dominating total nitrogen transport prior to the spring bloom (10 340×103 kg N inflow to the plume in March) and transport of nitrogen as ammonium, nitrate and POM in approximately equivalent amounts during summer (2560, 2960 and 2151×103 kg N inflow to the plume, respectively, in July). The box model also demonstrates more generally the need to assess nitrogen transport as nitrate, ammonium and POM if an improved understanding of the impact of nutrient input in shelf seas is to be achieved.  相似文献   

20.
The uptake of urea, nitrate and ammonium by phytoplankton was measured using 15N isotopes over a one-year period in Great South Bay, a shallow coastal lagoon. The bay is a unique environment for the study of nutrient uptake since ambient concentrations of NO3?NH4+ and urea remain relatively high through the year, and phytoplankton are probably never nutrient limited. Urea nitrogen averaged 52% of the total assimilated, while ammonium represented 33% and nitrate 13%. High rates of ammonium uptake occurred only at low urea concentrations (ca< 1-μg-atom urea l?1). Over the sampling period urea was present in relatively high concentrations, averaging 5·35 μg-atom N l?1, while means for ammonium and nitrate averaged 1·94 and 0·65 μg-atom N l?1, respectively. Total N uptake measured with 15N averaged about 3·3 times the calculated (from elemental ratios and 14C productivity measurements) N needs of the phytoplankton population. Highest nitrogen uptake occurred in the summer and coincided with the primary production maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号