首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The crystal growth of 3C-SiC onto silicon substrate by Vapor–Liquid–Solid (VLS) transport, where a SiGe liquid phase is fed with propane, has been investigated. Three sample configurations were used. In a preliminary approach, the VLS growth of SiC was conducted directly onto Si substrate using a Ge film as liquid catalyst. It led to the growth of a thick continuous SiC polycrystalline layer which was floating over a SiGe alloy located between the silicon substrate and the topping SiC layer. In the second configuration, a thin seeding layer of 3C-SiC grown by chemical vapor deposition (CVD) was used and the VLS growth was localized using a SiO2 mask. The liquid phase was a CVD deposited SiGe alloy. The growth of a few hundred nanometers thick 3C-SiC epitaxial layer was demonstrated but the process was apparently affected by the presence of the oxide which was dramatically etched at the end. In the last configuration, the silicon substrate was patterned down to 10 μm and a thin seeding layer of 3C-SiC was grown by CVD onto this patterned substrate. The liquid phase was again a CVD deposited SiGe alloy. In this last configuration, the presence of epitaxial SiC was evidenced but it grew as trapezoidal islands instead of an uniform layer.  相似文献   

2.
采用S iH4-C3H8-H2气体反应体系在S iO2/S i复合衬底上进行了S iC薄膜的APCVD生长。实验结果表明,H2表面预处理温度过高或时间过长会导致衬底表面S iO2层熔化再结晶或被腐蚀掉。通过“先硅化再碳化”的工艺方法可以较好地解决S iO2/S i复合衬底上S iC成核困难以及粘附性差的问题,同时还可以有效抑制S iO2中的O原子向S iC生长膜扩散。选择预处理温度和薄膜生长温度为1180℃、H2预处理、S iH4硅化和C3H8碳化时间均为30 s的最佳生长条件时,可以得到<111>晶向择优生长的多晶3C-S iC外延薄膜,薄膜生长速率约为2.0~2.5nm/m in.  相似文献   

3.
Homoepitaxial growth on off-axis α-SiC at reduced pressures in a horizontal cold-wall chemical vapor deposition (CVD) system operating at has been investigated. The growth rate was found inversely proportional to the square root of total pressure or the partial pressure of H2, a carrier gas. A model to explain the experimental results is proposed, where the rate-determining process in CVD is competition between Si species and hydrogen atoms for C (carbon) dangling bonds at SiC step edges.  相似文献   

4.
After a brief overview of different epitaxial layer growth techniques, the homoepitaxial chemical vapour deposition (CVD) of SiC with a focus on hot-wall CVD is reviewed. Step-controlled epitaxy and site competition epitaxy have been utilized to grow polytype stable layers more than 50 μm in thickness and of high purity and crystalline perfection for power devices. The influence of growth parameters including gas flow, C/Si ratio, growth temperature and pressure on growth rate and layer uniformity in thickness and doping are discussed. Background doping levels as low as 1014 cm−3 have been achieved as well as layers doped over a wide n-type (nitrogen) and p-type (aluminium) range.

Furthermore the status of numerical process simulation is mentioned and SiC substrate preparation is described. In order to get flat and damage free epi-ready surfaces, they are prepared by different methods and characterised by atomic force microscopy and by scanning electron microscope using channelling patterns. For the investigation of defects in SiC high purity CVD layers are grown. The improvement of the quality of bulk crystal substrates by micropipe healing and so-called dislocation stop layers can further decrease the defect density and thus increase the yield and performance of devices. Due to its high growth rate functionality and scope for the use of multi-wafer equipment hot-wall CVD has become a well-established method in SiC-technology and has therefore great industrial potential.  相似文献   


5.
本文利用简单、高效的浆料直接发泡法制备气孔率高达96%的Al2O3/Si泡沫陶瓷,并选用简便、易行的焦炭埋烧工艺在Al2O3/Si泡沫陶瓷坯体中生长出大量SiC纳米线。通过控制烧结温度来观察分析SiC纳米线的生长形貌变化。采用扫描电子显微镜(SEM)、X射线衍射仪、BET比表面积测试仪、电子万能试验机等对泡沫陶瓷的微观结构、物相组成、比表面积、气孔率、抗压强度、热导率进行分析与表征。结果表明,1 450 ℃烧结时得到的SiC纳米线最多,纳米线在泡沫陶瓷孔壁交织缠绕。同时观察到SiC纳米线的存在改变了氧化铝泡沫陶瓷固有的脆性断裂模式,SiC纳米线可有效促进泡沫陶瓷在压缩过程中的裂纹偏转。本实验制备了一种新型的纳米线缠绕在孔壁上的三维网络结构的泡沫陶瓷,为在泡沫陶瓷内部原位生长SiC纳米线提供了新的方法,更好地拓展了泡沫陶瓷在环境过滤、催化剂载体等领域中的应用。  相似文献   

6.
In most chemical vapor deposition (CVD) experiments in flow reactors carried out until now, growth conditions were chosen which yield growth rates independent or linearly dependent on the total gas flow rate, so that the residence time (t) of the gases in the hot zone of the reactor should not play any role in the growth rate. We have performed CVD experiments in the system MTS/H2, under conditions of low decomposition of MTS. We have found a region, where the growth rate and its derivatives depend strongly on the operating conditions, in particular, where the growth rate of SiC increases strongly with an increase of t. For lower or higher (but yet incomplete) decomposition of MTS, the growth rate becomes again independent of t, and its apparent energy of activation becomes 200 kJ/mol.  相似文献   

7.
Deposition of sub-monolayer silicon on SiO2/Si(1 0 0) greatly facilitates nucleation in subsequent thermal chemical vapor deposition (CVD) of silicon nanoparticles. Sub-monolayer seeding is accomplished using silicon atoms generated via disilane decomposition over a hot tungsten filament. The hot-wire process is nonselective towards deposition on silicon and SiO2, is insensitive to surface temperature below 825 K, and gives controlled coverages well below 1 ML. Thermal CVD of nanoparticles at 1×10−4 Torr disilane and temperatures ranging from 825 to 925 K was studied over SiO2/Si(1 0 0) surfaces that had been subjected to predeposition of Si or were bare. Seeding of the SiO2 surface with as little as 0.01 ML is shown to double the nanoparticle density at 825 K, and densities are increased twenty fold at 875 K after seeding the surface with 30% of a monolayer.  相似文献   

8.
We report the effect of annealing on the properties of amorphous hydrogenated silicon carbide thin films. The samples were deposited onto different substrates by plasma enhanced chemical vapor deposition at temperatures between 300 and 350 °C. The gaseous mixture was formed by silane and methane, at the ‘silane starving plasma regime’, and diluted with hydrogen. Rutherford backscattering and Fourier transform infrared spectrometry were used, respectively, to determine the atomic composition and chemical bonds of the samples. The film’s structure was analyzed by means of X-ray absorption fine structure and X-ray diffraction. For temperatures higher than 600 °C, amorphous silicon carbide films annealed under inert atmosphere (Ar or N2) clearly changed their structural and compositional properties due to carbon loss and oxidation, caused by the presence of some oxygen in the annealing system. At 1000 °C, crystallization of the films becomes evident but only stoichiometric films deposited on single crystalline Si[1 0 0] substrates presented epitaxial formation of SiC crystals, showing that the crystallization process is substrate dependent. Films annealed in high-vacuum also changed their structural properties for annealing temperatures higher than 600 °C, but no traces of oxidation were observed or variations in their silicon or carbon content. At 1200 °C the stoichiometric films are fully polycrystalline, showing the existence of only a SiC phase. The XANES signal of samples deposited onto different substrates and annealed under high-vacuum also show that crystallization is highly substrate dependent.  相似文献   

9.
Li Wang 《Journal of Non》2011,357(3):1063-1069
Amorphous SiC has superior mechanical, chemical, electrical, and optical properties which are process dependent. In this study, the impact of deposition temperature and substrate choice on the chemical composition and bonding of deposited amorphous SiC is investigated, both 6 in. single-crystalline Si and oxide covered Si wafers were used as substrates. The deposition was performed in a standard low-pressure chemical vapour deposition reactor, methylsilane was used as the single precursor, and deposition temperature was set at 600 and 650 °C. XPS analyses were employed to investigate the chemical composition, Si/C ratio, and chemical bonding of deposited amorphous SiC. The results demonstrate that these properties varied with deposition temperature, and the impact of substrate on them became minor when deposition temperature was raised up from 600 °C to 650 °C. Nearly stoichiometric amorphous SiC with higher impurity concentration was deposited on crystalline Si substrate at 600 °C. Slightly carbon rich amorphous SiC films with much lower impurity concentration were prepared at 650 °C on both kinds of substrates. Tetrahedral Si-C bonds were found to be the dominant bonds in all deposited amorphous SiC. No contribution from Si-H/Si-Si but from sp2 and sp3 C-C/C-H bonds was identified.  相似文献   

10.
Crystalline ZnO nanoparticles were synthesized on Si substrates with or without a Au catalyst by a chemical vapor deposition (CVD) method using ZnS as the source material. The average sizes are in the range of 40–200 nm and the densities of 104–1010 cm−2. In the absence of an Au catalyst, the average nanoparticle size firstly decreases and then increases with increasing substrate temperature while the nanoparticle density decreases as the substrate temperature increases. In the presence of an Au catalyst, ZnO nanoparticles only grow when the substrate temperature is higher than 300°C and the higher the substrate temperature the denser the nanoparticles are deposited. The density of the ZnO nanoparticles grown on a Si (1 1 1) substrate is higher than that on a Si (1 0 0) substrate with or without Au catalyst.  相似文献   

11.
Dc conductivity, absorption coefficient, photoconductivity, and magnetoresistance of phosphorus-doped amorphous Si films prepared by chemical vapor deposition (CVD) have been measured as a function of doping ratio. These results indicate that phosphorus doping reduces localized states in the mobility gap, narrows the tailing width below the extended states, and that phosphorus donors form the impurity band at 0.15 eV below Ec at a doping ratio of about 1×10-2. It is also found that electronic properties of CVD amorphous Si can be controlled in a wide range by substitutional doping of phosphorus atoms.  相似文献   

12.
《Journal of Non》2006,352(9-20):1196-1199
Optical absorption coefficient spectra of hydrogenated microcrystalline cubic silicon carbide (μc-3C–SiC:H) films prepared by Hot-Wire CVD method have been estimated for the first time by resonant photothermal bending spectroscopy (resonant-PBS). The optical bandgap energy and its temperature coefficient of μc-3C–SiC:H film is found to be about 2.2 eV and 2.3 × 10−4 eV K−1, respectively. The absorption coefficient spectra of localized states, which are related to grain boundaries, do not change by exposure of air and thermal annealing. The localized state of μc-3C–SiC:H has different properties for impurity incorporation compared with that of hydrogenated microcrystalline silicon (μc-Si:H) film.  相似文献   

13.
The SiC/SiOx hetero-superlattice (HSL) consisting of alternating near-stoichiometric SiC barrier layers for the electrical transport and silicon rich SiOx matrix layers for the quantum dot formation is a promising approach to the realization of silicon quantum dot (Si–QD) absorbers for 3rd generation solar cells. However, additional defect states are generated during post deposition annealing needed for the Si–QD formation causing an increase in sub-band gap absorption and a decrease in PL intensity. Proper passivation of excess defects is of major importance for both the optical and electrical properties of the SiC/SiOx HSL Si–QD absorber. In this work, we investigate the effectiveness of the hydrogen reincorporation achieved with hydrogen plasma in a plasma-enhanced chemical vapor deposition (PECVD) reactor, hydrogen dissociation catalysis in hot-wire chemical vapor deposition (HWCVD) reactor and annealing in forming gas atmosphere (FGA). Both the HSL samples and single layer reference samples are tested. The passivation quality of the hydrogen reincorporation was examined by comparing electrical and optical properties measured after deposition, after annealing and after passivation. In addition, the formation of Si–QDs in SiC/SiOx HSL was evaluated using high resolution transmission electron microscopy. We demonstrated that hydrogen can be successfully reincorporated into the annealed HSL sample and its single layer reference samples. FGA passivation is most effective for SiO1.2 single layers and HSL samples. Passivation with PECVD appeared to be only effective for SiC single layers.  相似文献   

14.
This paper presents a study of the transition between amorphous and crystalline phases of SiC films deposited on Si(1 0 0) substrate using H3SiCH3 as a single precursor by a conventional low-pressure chemical vapor deposition method in a hot-wall reactor. The microstructure of SiC, characterized by X-ray diffraction and high-resolution transmission electron microscopy, is found to vary with substrate temperature and H3SiCH3 pressure. The grain size decreases with increasing MS pressure at a given temperature and also decreases with reducing temperature at a given MS pressure. The deposition rates are exponentially dependent on the substrate temperature with the activation energy of around 2.6 eV. The hydrogen compositional concentration in the deposited SiC films, determined by secondary ion mass spectrometry depth profiling, is only 2.9% in the nanocrystalline SiC but more than 10% in the amorphous SiC, decreasing greatly with increasing deposition temperature. No hydride bonds are detected by Fourier transform infrared spectroscopy measurements. The chemical order of the deposited SiC films improves with increasing deposition temperature.  相似文献   

15.
In this paper, Ti3AC2 (A = Al, Si) were prepared by pressureless argon shielding synthesis technique. The microstructure and phase transformation of as‐prepared Ti3AC2 (A = Al, Si) in hydrothermal hydrofluoric acid (HF) solution were investigated systematically. Results showed that the obtained Ti3AlC2 and Ti3SiC2 were closely aligned layered structure. In hydrothermal HF solution, Al or Si element was preferentially etched from the layered structure, inducing obvious transformation of microstructure and phase composition. For Ti3AlC2, Al atoms diffused out of the structure and reacted with HF to form AlF3•H2O, which induced the rearrangement of the Ti and C atoms, and finally resulted in the formation of TiCx cubic phase. With the hydrothermal temperature and reaction time increasing, the TiCx phase gradually disappeared and the grain size of AlF3•H2O gradually increased. When Ti3SiC2 was immersed in hydrothermal HF solution, the main products were TiC and SiC. Interestingly, with the hydrothermal treatment temperature and reaction time increasing, TiC gradually disappeared, while SiC nearly kept unchanged. This can be explained that SiC was covalently bonded carbide, while TiC was metallically bonded, having relatively weak bond energy and consequently being unstable in hydrothermal HF solution.  相似文献   

16.
SiC crystal growth in transition metal silicide melts was investigated by using spontaneous infiltration and solution methods. In the infiltration experiments, SiC powder preforms were infiltrated with FexSiy (Fe3Si, Fe5Si3 and FeSi) and CoSi melts. The dissolution and precipitation of SiC led to SiC crystals growth in the infiltrated Fe5Si3 and CoSi melts, SiC particles coalescing in FeSi and free carbon precipitation in Fe3Si. In the solution experiments, carbon from the graphite crucible dissolved in and reacted with FeSi2 and Ti2.3Si7.7 to form SiC crystals. Scanning electron microscopy (SEM), X‐ray diffraction (XRD) and Raman scattering spectrometer were employed to investigate SiC crystals growth. Based on the investigation, the effect of solution content on the SiC crystal growth, the growth mechanisms in both methods and prototypes of the SiC crystals are also discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
A precursor prepared from a methyltriethoxysilane ((CH3)Si(OC2H5)3, MTES)-B(OC2H5)3-polyacrylonitrile (PAN) composition was used for the synthesis of boron-doped SiC by carbothermal reduction. Initially, MTES was hydrolyzed with HCl (MTES: H2O: HCl = 1 : 1 : 0.01) for 1 h in a sealed vessel. The number-average molecular weight measurement and a NMR spectrum revealed that the species in the solution were mainly oligometric. With the addition of B(OC2H5)3, no significant changes in the distribution of the Si containing species were detected. The mixing of the hydrolyzed solution with a PAN-dimethylsulfoxide solution led to a homogeneous solution. After the evaporation of the solvents and the subsequent heat treatment at 220° C, brown precursor powder was obtained. By the heat treatment at 1600° C in Ar, it was converted to boron-doped SiC powder.  相似文献   

18.
The comparison of the results of chemical composition, crystal structure, electronic properties and infrared photoconductivity investigations of PbTe/Si and PbTe/SiO2/Si heterostructures doped with Ga atoms by two different techniques is presented in this work. One of these techniques is principally based on the vapour-phase doping procedure of PbTe/Si and PbTe/SiO2/Si heterostructures, which were previously formed by the modified “hot wall” technique. The second method of PbTe(Ga)/Si and PbTe(Ga)/SiO2/Si heterostructure preparation is based upon the fabrication of lead telluride films, which have been doped with Ga atoms in the layer condensation process directly. The lattice parameter and charge carrier density evolutions with the Ga impurity concentration show principally the different character of PbTe(Ga)/Si films prepared by these techniques. It has been proposed that complicated amphoteric (donor or acceptor) behaviour of Ga atoms may be explained by different mechanisms of substitution or implantation of impurity atoms in the crystal structure of lead telluride.  相似文献   

19.
Bulk AlN–SiC mixed single crystals are prepared by sublimation growth employing pure AlN or mixed AlN–SiC sources and 6H-SiC seed crystals. As the growth temperature is increased from 1900 to 2050 °C, using seeds with different off-axis orientations, inclined up to 42° from the basal plane toward the (0 1 –1 0)-plane, or using different source materials, crystals with different Si/C contents are obtained. Dependent on the Si and/or C content, crystal coloration changes from yellowish to greenish to blackish. Modification in crystals’ coloration and corresponding changes in below band-gap optical absorption and cathodoluminescence spectra are discussed.  相似文献   

20.
Thin films of crystalline lithium niobate (LN) grown on Si(1 0 0) and SiO2 substrates by electron cyclotron resonance plasma sputtering exhibit distinct interfacial structures that strongly affect the orientation of respective films. Growth at 460–600 °C on the Si(1 0 0) surface produced columnar domains of LiNbO3 with well-oriented c-axes, i.e., normal to the surface. When the SiO2 substrate was similarly exposed to plasma at temperatures above 500 °C, however, increased diffusion of Li and Nb atoms into the SiO2 film was seen and this led to an LN–SiO2 alloy interface in which crystal-axis orientations were randomized. This problem was solved by solid-phase crystallization of the deposited film of amorphous LN; the degree of c-axis orientation was then immune to the choice of substrate material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号