首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
In many chemical processes, large amounts of wastewater containing butanol and isobutanol are produced. Given that n-butanol-isobutanol-water can form triple azeotrope, high-purity butanol cannot be recovered from the wastewater by ordinary distillation. To economically and effectively recover butanol from this kind of wastewater, 1,4-butanediol is selected as an extractant to break the formation of the azeotropes, and a doubleeffect extractive distillation process is proposed. The conceptual design of the proposed process is accomplished based on process simulation. With the proposed process, the purity of recovered butanol and water is greater than 99.99 wt%. In comparison with the conventional azeotropic distillation process, economic analysis shows that the operating cost of the proposed process is lower:when the capacity of wastewater treatment is 100 t·h-1, the total operating cost decreases by 5.385×106 USD per year, and the total annual cost of the new process decreases by 5.249×106 USD per year. In addition, in the extractive distillation system, variable effects on separation purities and cost are more complex than those in the ordinary distillation system. The method and steps to optimize the key variables of the extractive distillation system are also discussed in this paper and can provide reference for similar studies.  相似文献   

2.
3.
A new approach for the feasibility analysis of reactive distillation processes based on the reactive extractive curve maps (rExCM) concept is introduced. A method dedicated to reactive distillation feasibility analysis, and design has been developed in our team since 1999. From minimal information concerning the physicochemical properties of the system, three steps lead to the design of the unit and the specification of its operating conditions. Currently, the procedure permits the conceptual design of hybrid reactive column configuration with one or two feed plates, for any number of equilibrium reactions (provided that the degree of freedom of the system is equal to 2) occurring in liquid or vapor phase. This contribution focuses on the most recent developments: the generalization of the feasibility analysis step to double‐feed processes thanks to the introduction of the rExCM concept. This methodology is illustrated through two examples: the emblematic methyl acetate example and the production of dimethyl methyl glutarate. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2346–2356, 2012  相似文献   

4.
The commercialization of cellulose nanocrystals (CNCs) is currently limited by its environmental impact of high water consumption and brine wastewater generation. Here, a combined process integrating the production of CNCs and calcium sulfate whiskers (CSWs) was proposed to achieve complete utilization of the waste acid, and the corresponding environmental performance was evaluated by life cycle assessment (LCA). Accordingly, we prepared fibrous CSWs with an average length of 309 μm and an average aspect ratio of 57 under optimum conditions. The LCA results demonstrated the superior environmental performance of the combined process, especially for CNC production, and the impact values reduced by 45.6% on average. Moreover, the cost of producing 20 g of CNCs decreased from 3.04 CNY (traditional process) to 1.66 CNY (combined process). Therefore, this combined production process is eco-efficient and economically scalable for the industrial production of CNCs.  相似文献   

5.
6.
This work presents a process design methodology that evaluates the distillation systems based on exergetic, economic, and greenhouse gas (GHG) emission aspects. The aim of the methodology is to determine how these three features should be applied in process design to obtain information about the accuracy of the design alternatives. The methodology is tested and demonstrated on three different energy‐integrated distillation systems: the direct sequence with backward heat‐integration (DQB), fully thermally coupled distillation column (FTCDC), and sloppy distillation system with forward heat‐integration (SQF). The average relative emission saving is the highest for the DQB scheme and this sequence shows the most flexible range of use. The case studies prove the accuracy of our evaluation methodology. On the other hand, it highlights and demonstrates that the exergy analysis can predict the results of the economic study and the environmental evaluation to make the decisions, associated with process design, much simpler. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

7.
This study develops a coupling of energetic and experimental design approaches on a given configuration of wet air oxidation process (WAO), applied for wastewater containing a hard chemical oxygen demand (phenol for instance). Taking into account thermodynamic principles and process simulation, the calculation of minimum heat required by the process, exergetic efficiency and work balance is presented. Five parameters are considered: pressure (20-30 MPa); temperature (200-300 °C); chemical oxygen demand (23-143 g l−1); air ratio (1.2-2) and temperature of exiting steam utilities (160-200 °C). Using the surface response method, it appears that initial chemical oxygen demand and temperature are the two parameters that mainly influence the result. With the modelling, good conditions for the functioning of the presented process are the following: pressure of 19.4 MPa, temperature of 283 °C, chemical oxygen demand of 54.9 g l−1, air ratio of 1.7 and vapour temperature of 183 °C.  相似文献   

8.
9.
A successful intensification of a chemical process requires a holistic view of the process and a systematic debottlenecking, which is obtained by identifying and eliminating the main transport resistances that limit the overall process performance and thus can be considered as rate determining steps on the process level. In this paper, we will suggest a new approach that is not based on the classical unit operation concept, but on the analysis of the basic functional principles that are encountered in chemical processes.A review on the history of chemical engineering in general and more specifically on the development of the unit operation concept underlines the outstanding significance of this concept in chemical and process engineering. The unit operation concept is strongly linked with the idea of thinking in terms of apparatuses, using technology off the shelf. The use of such “ready solutions” is of course convenient in the analysis and design of chemical processes; however, it can also be a problem since it inherently reduces the possibilities of process intensification measures.Therefore, we break with the tradition of thinking in terms of “unit apparatuses” and suggest a new, more rigorous function-based approach that focuses on the underlying fundamental physical and chemical processes and fluxes.For this purpose, we decompose the chemical process into so-called functional modules that fulfill specific tasks in the course of the process. The functional modules itself can be further decomposed and represented by a linear combination of elementary process functions. These are basis vectors in thermodynamic state space. Within this theoretical framework we can individually examine possible process routes and identify resistances in individual process steps. This allows us to analyze and propose possible options for the intensification of the considered chemical process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号