首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
为优化大孔吸附树脂分离纯化苦荞总皂苷的工艺条件,通过静态吸附解吸实验筛选出适合分离纯化苦荞总皂苷的大孔吸附树脂SP700,其饱和吸附量为(25.241±0.590)mg皂苷/g树脂。研究了样液浓度、吸附时间对吸附容量的影响,乙醇体积分数对解吸得率的影响,并进行了动态实验,确定了SP700型大孔树脂分离纯化苦荞总皂苷的最佳工艺条件为:最佳上样浓度约0.586mg/m L,流速2BV/h,树脂比样液体积为1∶1,动态洗脱实验中,上样后用体积分数分别为50%和70%的乙醇溶液进行分段洗脱,洗脱流速为2BV/h,用量为2~3BV,洗脱得率最高可达到88.9%,洗脱液蒸干后所得固形物中皂苷含量较提取液固形物中皂苷含量提高了约2倍。  相似文献   

2.
采用大孔吸附树脂纯化樟树叶醇提液中木脂素类化合物。通过对比6种大孔树脂对樟树叶中木脂素吸附-解吸效果,从中筛选一种最适大孔吸附树脂作为纯化材料,并研究上样浓度、上样流速、上样体积对大孔树脂吸附率的影响,以及洗脱剂浓度、洗脱流速、洗脱剂用量对大孔树脂解吸率的影响,通过正交试验优化大孔树脂纯化木脂素的工艺。试验结果表明,大孔树脂最佳吸附-解吸工艺条件为:7BV上样量、2.12mg/mL上样浓度、1.0 mL/min上样速率、80%乙醇洗脱剂、洗脱流速2BV/h,洗脱剂用量8BV,该条件下樟树叶中木脂素得率为66.68%,纯度为15.91%,表明该大孔树脂对于樟树叶中木脂素纯化效果较好。  相似文献   

3.
采用AB-8型大孔树脂对从鼠曲草中提取的总黄酮产物进行分离纯化研究。考察各种因素对树脂吸附和洗脱效果的影响。通过实验得到最佳吸附工艺条件为上样液流速2BV/h、上样液pH4.5、上样液质量浓度1.7mg/mL;最佳洗脱工艺条件为洗脱液体积分数为60%乙醇、洗脱液流速1BV/h和洗脱液用量1.8BV。分离纯化后的总黄酮产品纯度可达35.42%。  相似文献   

4.
利用7种大孔树脂对酸枣仁的总黄酮进行纯化,依据其吸附能力及解吸能力,选出最佳的大孔树脂型号,研究了上样液浓度、上样速度、上样液体积对大孔树脂吸附率的影响以及洗脱剂类型、洗脱剂浓度、洗脱速度、洗脱剂体积对大孔树脂解吸率的影响,采用正交试验对酸枣仁总黄酮的纯化工艺进行了优化。试验结果表明,DM301大孔树脂纯化酸枣仁总黄酮效果最佳,在上样液浓度为0.1 mg/mL、上样速度为1 BV/h、上样液体积为30 mL、洗脱剂为丙酮、洗脱剂浓度为100%、洗脱速度为2 BV/h、洗脱剂体积为55 mL的条件下,获得的酸枣仁总黄酮纯度最高,相较于纯化前提高了约1.1倍。  相似文献   

5.
本文以三萜类化合物的洗脱效果为考察指标,研究适合芡实壳三萜类化合物分离纯化的大孔树脂吸附性能及洗脱参数。研究结果显示DM301型大孔树脂适宜芡实壳三萜类化合物的分离纯化,吸附过程符合Langmuir单层吸附方程,其工作条件为上样液p H6,上柱液6BV,上样液浓度为3.5mg/m L,洗脱流速为2BV/h,洗脱剂乙醇的体积分数为90%。结果表明,DM301型大孔树脂可用于芡实壳三萜类化合物的分离纯化,三萜类化合物含量由36.42%提高到87.54%。该工艺条件科学合理,可有效用于芡实壳三萜类化合物的分离富集。  相似文献   

6.
用80%乙醇(含0.1%乙酸)超声辅助提取黑加仑多酚(简写为BCP),比较五种大孔树脂对BCP的静态吸附和解吸能力,筛选出纯化BCP的最佳树脂;结果表明NKA-9为BCP纯化的最佳树脂,具有较好的吸附、解吸效果;对BCP的纯化动态吸附和洗脱条件进行研究;结果表明吸附BCP条件为上样液p H 3,质量浓度5 mg/m L、吸附流速2BV/h。解吸条件为解吸液洗脱液体积分数70%、解吸流速2 BV/h、解吸液所用体积为200 m L。  相似文献   

7.
黎继烈  黄凌  崔培梧  郝聚喜  王卫 《食品科学》2010,31(12):101-105
以宽叶缬草中的缬草素提取物为原料,对选取的 5 种大孔吸附树脂进行静态吸附试验,确定 D101 树脂为最优吸附树脂。通过 D101 树脂吸附缬草素的上样量试验与动态洗脱试验,确定上样溶液中缬草素质量浓度为10.0mg/mL,上样体积为 20.0mL,洗脱体积为 4BV。采用三元二次通用组合试验,考察上样流速、洗脱流速和洗脱液甲醇体积分数对柱层析纯化缬草素效果的影响,建立大孔树脂柱层析纯化缬草素的数学模型,经回归与方差分析,对模型进行局部寻优得出最佳工艺条件为:上样流速 2.5BV/h、洗脱流速 1.7BV/h,甲醇体积分数 75%,纯化后缬草素理论得率为72.40%,验证值为(72.12 ± 0.1)%。  相似文献   

8.
大叶藻总黄酮的大孔树脂纯化工艺   总被引:1,自引:0,他引:1  
为纯化大叶藻中提取的总黄酮,选择5 种大孔吸附树脂,通过静态吸附和解吸实验,选定两种最优树脂D101-1和AB-8;再将两种树脂进行混合实验,选出混合吸附树脂最优混合比例,最后确定最佳纯化工艺条件:D101-1和AB-8吸附树脂按2∶3比例混合、上样液pH 3、样液质量浓度1.25 mg/mL、洗脱液乙醇体积分数70%,上样量和上样流速分别为6 BV和3 BV/h,洗脱体积和洗脱流速分别为5 BV和3 BV/h条件下进行纯化实验,样液中的总黄酮含量由原来(12.66±0.42)%上升至(51.25±1.26)%。  相似文献   

9.
以宽叶缬草中的缬草素提取物为原料,对选取的5种大孔吸附树脂进行静态吸附试验,确定D101树脂为最优吸附树脂。通过D101树脂吸附缬草素的上样量试验与动态洗脱试验,确定上样溶液中缬草素质量浓度为10.0mg/mL,上样体积为20.0mL,洗脱体积为4BV。采用三元二次通用组合试验,考察上样流速、洗脱流速和洗脱液甲醇体积分数对柱层析纯化缬草素效果的影响,建立大孔树脂柱层析纯化缬草素的数学模型,经回归与方差分析,对模型进行局部寻优得出最佳工艺条件为:上样流速2.5BV/h、洗脱流速1.7BV/h,甲醇体积分数75%,纯化后缬草素理论得率为72.40%,验证值为(72.12±0.1)%。  相似文献   

10.
大孔吸附树脂纯化八角枫根中水杨苷工艺   总被引:1,自引:0,他引:1  
研究大孔树脂纯化八角枫根中水杨苷的最佳工艺条件。以水杨苷的吸附率和解吸附率为评价指标,筛选树脂种类,并优化吸附和洗脱条件。8种大孔吸附树脂中,HPD-826型大孔树脂对水杨苷具有较好的吸附分离性能,最佳的纯化工艺条件为上样液质量浓度45.12μg/mL、最大上样量6.5BV、径高比1:8、洗脱流速3BV/h,先用4BV的水洗柱除去水溶性杂质,再用5BV体积分数30%乙醇溶液洗脱。经HPD-826型大孔树脂处理后的水杨苷回收率可达78%左右,HPD-826大孔树脂对水杨苷纯化的综合性能较好,工艺稳定、可行,适合于工业化生产。  相似文献   

11.
以总黄酮吸附量为考察指标,采用分光光度法进行测定,先从D101、AB-8、HPD-400、D001、X-5五种不同类型大孔树脂中筛选出静态分离纯化文冠果落果总黄酮的最佳树脂,再对该树脂进行动态吸附工艺参数研究,以确定其对文冠果落果总黄酮的最优纯化方案。结果表明,HPD-400型大孔树脂对文冠果落果总黄酮分离纯化效果最好,优选工艺条件:上样液浓度0.53 mg/m L,上样液p H3.0,上样体积为1.5 BV,上样流速为3 BV/h;洗脱流速为2 BV/h,去离子水除杂体积2 BV,40%乙醇洗脱液3 BV,产物中总黄酮纯度45.79%。上述采用HPD-400型树脂分离纯化文冠果落果总黄酮效果最好,且具有工艺稳定性。  相似文献   

12.
大孔树脂纯化苦菜多酚及其组成分析   总被引:1,自引:0,他引:1  
研究大孔树脂纯化苦菜多酚的吸附特性、工艺条件,分析了苦菜多酚粗品、纯品的组成。分别进行静态吸附和解吸、静态吸附等温曲线(Langmuir和Freundich等温吸附方程)、动态吸附试验,从6种大孔树脂中筛选用于苦菜多酚分离的最佳树脂,并系统研究最佳大孔树脂分离纯化的吸附性能和最优洗脱参数。结果表明:NKA-9型大孔树脂为分离苦菜多酚类组分的最佳树脂,其分离的最佳工艺条件为样液总酚浓度0.5mg/mL,上样流速3BV/h,pH 5的50%乙醇以1BV/h流速进行洗脱,该纯化条件下所得苦菜多酚含量为72.38%,较纯化前提高了4.92倍。应用高效液相色谱法分析其组成,结果显示苦菜多酚主要成分为卢丁、绿原酸、咖啡酸、芹菜素、原儿茶素,经NKA-9型大孔树脂纯化后的芹菜素达8.53mg/g,较粗品提高了20.16倍。  相似文献   

13.
目的对采用大孔吸附树脂法分离纯化茶叶籽饼粕中茶皂素的工艺进行优化,为进一步开发利用茶叶籽资源提供依据。方法以茶皂素吸附率与解吸率为指标,通过静态吸附与解吸实验筛选最优树脂。通过单因素实验、正交实验及验证性实验,优化最优树脂动态吸附与解吸茶皂素的工艺参数。结果D101树脂的静态吸附量与解吸率分别为142.974 mg/g和98.02%,为分离纯化料液中茶皂素的最优树脂;当主要考虑茶皂素得率时,其最优动态吸附与解吸工艺参数为上样质量浓度10 mg/m L、上样流速3 BV/h、上样体积6 BV、乙醇洗脱体积浓度80%、洗脱流速3 BV/h、洗脱剂体积5 BV,在该工艺参数条件下,茶皂素得率为74.25%,纯度为84.30%;当主要考虑茶皂素纯度时,最优动态吸附与解吸工艺参数为上样质量浓度10 mg/m L、上样流速4 BV/h、上样体积7 BV、乙醇洗脱体积浓度70%、洗脱流速3 BV/h、洗脱体积5 BV,在该工艺参数条件下,茶皂素纯度为97.7%,得率为72.04%。结论 D101大孔吸附树脂是一种可应用于茶叶籽饼粕中茶皂素分离纯化的较好树脂。  相似文献   

14.
主要研究了大孔树脂纯化金兰柚果胶工艺。以金兰柚果胶吸附率为指标,选用D101大孔树脂纯化金兰柚果胶,通过响应面分析法确定大孔树脂纯化金兰柚果胶最佳工艺条件,即吸附流速为5 BV/h,乙醇体积分数为77%,上样液浓度为0.8 g/m L,洗脱流速7 BV/h,在此条件下金兰柚果胶吸附率为88.2%。  相似文献   

15.
以葡萄糖为标准品,利用大孔吸附树脂分离纯化玉竹多糖,结果表明AB-8大孔吸附树脂分离纯化玉竹多糖的最佳上样浓度为1.0 mg/m L,最佳洗脱浓度为75%乙醇,最佳流速为1.0 m L/min,洗脱液体积为上样的10 BV,玉竹粗多糖的纯度从65.23%提高到78.64%;D-101大孔吸附树脂分离纯化玉竹多糖的最佳上样浓度为0.6 mg/m L,最佳洗脱浓度为50%乙醇,最佳流速为1.0 m L/min,洗脱液体积为上样的10.5 BV,玉竹粗多糖的纯度从65.23%提高到73.79%。AB-8大孔吸附树脂对玉竹多糖的分离纯化效果优于D-101大孔吸附树脂。  相似文献   

16.
采用静态-动态吸附与解析相结合的方法,从12种树脂中筛选出纯化明日叶总黄酮最佳的树脂并对其纯化工艺条件进行探讨。结果表明:HPD-600大孔树脂对明日叶总黄酮有较好的吸附、解析效果。最佳纯化条件为:上柱液中总黄酮质量浓度控制在2 mg/m L~3 mg/m L之间,以3 BV/h的流速过柱,树脂达吸附饱和的上样量为2.7 BV;洗脱条件为:用蒸馏水冲洗至无色后,改用4 BV,50%乙醇以2 BV/h流速进行洗脱。经HPD-600树脂纯化后,明日叶总黄酮的纯度由14.46%提升至46.96%,提升近3.2倍。  相似文献   

17.
以葡萄糖为标准品,利用大孔吸附树脂分离纯化玉竹多糖,结果表明D301大孔吸附树脂最佳上样浓度为1.3 mg/m L,最佳洗脱浓度为50%乙醇,最佳流速为1.0 m L/min,洗脱液体积为上样的10 BV,玉竹粗多糖的纯度从65.23%提高到82.52%;LSA-700B大孔吸附树脂分离纯化玉竹多糖的最佳上样浓度为0.6 mg/m L,最佳洗脱浓度为75%乙醇,最佳流速为1.0 m L/min,洗脱液体积为上样的10.4 BV,玉竹粗多糖的纯度从65.23%提高到76.43%;D301大孔吸附树脂对玉竹多糖的分离纯化效果明显优于LSA-700B大孔吸附树脂。  相似文献   

18.
目的利用大孔树脂来纯化马兰头中粗黄酮,并确定纯化黄酮的最佳工艺。方法以黄酮回收率为指标,在单因素实验的基础上运用Box-Behnken响应面法(response surface methodology,RSM)设计三因素三水平实验以获得最佳纯化条件。结果 HPD-600大孔吸附树脂纯化马兰头粗提液的最佳工艺条件为:上样浓度0.93 mg/mL、上样pH为3.00、洗脱剂体积分数为84.17%、吸附速率1 BV/h,洗脱速率1 BV/h,此条件下马兰头总黄酮的质量分数由纯化前的4.11%提高到纯化后的50.80%。结论利用HPD-600型大孔树脂可以较好地纯化马兰头中的总黄酮。  相似文献   

19.
主要研究了大孔树脂分离纯化蚕蛹多肽工艺。以蚕蛹多肽纯度为指标,选用AB-8大孔树脂分离纯化蚕蛹多肽,通过响应面分析法确定大孔树脂分离纯化蚕蛹多肽最佳工艺条件,即吸附流速为8 BV/h,乙醇体积分数为71%,上样液浓度为0.4 g/m L,洗脱流速9 BV/h,在此条件下蚕蛹多肽纯度为87.8%。  相似文献   

20.
研究大孔树脂纯化马兰总黄酮树脂吸附特性及工艺条件及参数。文中分别进行静态吸附、静态解吸、静态吸附动力学过程(Lagergren准一级动力学方程)、静态吸附等温曲线(Langmuir和Freundich等温吸附方程)、动态吸附实验,从7种大孔树脂中筛选用于马兰总黄酮分离的最佳树脂,并系统研究最佳大孔树脂分离纯化的吸附性能和最优洗脱参数。结果表明:D101型大孔树脂为分离马兰黄酮类组分最佳树脂,其分离的最佳工艺为总黄酮浓度为9.36 mg/mL的样液,以3 BV/h的流速,控制pH值为4~5上柱,用75%乙醇以3 BV/h用量进行洗脱,可获得样品总黄酮纯度达70%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号