首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent sediments and separated phosphate pellets ( 125–500 μm in diameter) from the Peru shelf have been analyzed for uranium decay-series isotopes and 14C in order to determine age relationships and mineralization rates. Uranium-series ages of pellets separated from one box core are significantly higher than AMS radiocarbon ages determined for the same pellets. These differences appear to be a consequence of mixing of an older generation of pellets with ones which are more recently formed. Postdepositional adsorption of reactive elements such as thorium and protactinium onto pellet surfaces may also contribute to the observed discordancy with radiocarbon ages.

Sediment radiocarbon and 210Pb sediment results, as well as some trends in the uranium-series data, suggest that high concentrations of phosphate pellets have accumulated in some Peru shelf sediments without extensive reworking. Individual pellets apparently form very quickly, on time scales of a few years. Estimated authigenic uptake rates of phosphorus into pellets ranges from 0.5 to 9.40 μmol-P cm− 2 yr− 1, somewhat higher than rates measured for nodules from the same area. This is consistent with observations that pelletal morphologies predominate over nodular forms within ancient phosphorite deposits.  相似文献   


2.
P. Lesueur  J. P. Tastet 《Marine Geology》1994,120(3-4):267-290
Seventy cores from the Aquitaine continental shelf were examined using radiographic and grain-size techniques in order to describe the sedimentary structures of the muddy deposits, and to evaluate their depositional processes. Four lithofacies are identified in this fine-grained deposit: (a) homogeneous silty sand, (b) interbedded homogeneous mud and sand, (c) silty-clayey mud, and (d) mottled mud. They show a logical pattern in relationship to the water depth and the distance from the coast.

Primary structures are present particularly in the landward and central portion of the mud fields, where the sediment is organized into sequences with a sharp-based erosional contact, overlain by a fining-up succession (centimetre to decimetre scale). The beginning of each of these is characteristic of a high-energy storm event, which is common on this shelf. The settling of suspended fine sediment corresponds to the flood estuarine discharge during quiet periods. Primary sedimentary structures decrease in the distal area where the muddy sediment is frequently reworked by infauna. Finally, primary structures and their preservation depend on the relative magnitudes of surface waves, storms, infaunal mixing and fluvial sediment deposition rates (i.e. floods).  相似文献   


3.
The oft-cited general correlation between net sediment accumulation and preservation of organic matter, while revealing in many ways, can be a misleading indicator of general elemental cycling processes and controls on storage of biogenic material at the continental-ocean boundary. Deltaic environments are characterized by the highest rates of net sedimentation and are the single most important class of depocenters on Earth. Available data indicate that sedimentary organic C (Corg) of both terrestrial and marine origin is efficiently decomposed in deltaic areas, with decomposition percentages reaching ≥70% and ≥90%, respectively, the latter percentage (marine) being quite comparable to deep-sea, low sedimentation environments. Despite high primary productivity associated with most deltas and evidence of substantial deposition of fresh planktonic debris, patterns of SO4= reduction indicate that the reactivity of organic material being buried is low, and that a larger proportion of Corg is often degraded compared to other marine deposits of similar net accumulation rate. As indicated by properties of the surficial Amazon delta and downdrift coastal region of northeast South America (1600-km extent), the primary reasons for efficient remineralization are related to intense and massive physical reworking of sediment associated with estuarine fronts, upwelling, tidal oscillation, and wind-driven waves. Fluid muds and mobile surface material cause the seafloor and continental boundary to act as a massive, suboxic, fluidized bed reactor dominated in some cases by bacterial rather than macrofaunal biomass. Reoxidation, repetitive redox successions, metabolite exchange, and continual mixing-in of fresh planktonic debris with refractory terrestrial components, result in an efficient decomposition system largely decoupled from net accumulation. Similar processes occur on smaller scales in most estuarine-shelf systems, but appear to be most dramatically expressed off the major rivers forming deltas.  相似文献   

4.
Rare earth elements in the phosphatic-enriched sediment of the Peru shelf   总被引:1,自引:0,他引:1  
Apatite-enriched materials from the Peru shelf have been analyzed for their major oxide and rare earth element (REE) concentrations. The samples consist of (1) the fine fraction of sediment, mostly clay material, (2) phosphatic pellets and fish debris, which are dispersed throughout the fine-grained sediment, (3) tabular-shaped phosphatic crusts, which occur within the uppermost few centimeters of sediment, and (4) phosphatic nodules, which occur on the seafloor. The bulk REE concentrations of the concretions suggest that these elements are partitioned between the enclosed detrital material and the apatite fraction. Analysis of the fine-grained sediment with which the samples are associated suggested that this detrital fraction in the concretions should have shale REE values; the analysis of the fish debris suggested that the apatite fraction might have seawater values. The seawater contribution of REE's is negligible in the nodules and crust, in which the apatite occurs as a fine-grained interstitial cement. That is, the concentration of REE's and the REE patterns are predominantly a function of the amount of enclosed fine-grained sediment. By contrast, the REE pattern of the pelletal apatite suggests a seawater source and the absolute REE concentrations are relatively high. The REE/P2O5 ratios of the apatite fraction of these samples thus vary from approximately zero (in the case of the crust and nodules) to as much as approximately 1.2 × 10−3 (in the case of the pellets). The range of this ratio suggests that rather subtle variations in the depositional environment might cause a significant variation in the REE content of this authigenic fraction of the sediment.

Pelletal glauconite was also recovered from one sediment core. Its REE concentrations closely resemble those of the fish debris.  相似文献   


5.
《Marine Geology》2005,216(4):239-247
The Ayeyarwady continental shelf is a complex sedimentary system characterized by large sediment influx (> 360 million ton/yr), a wide shelf (> 170 km), a strong tidal regime (7 m maximum tidal range), and incised by the Martaban Canyon. Grain size distribution on the Ayeyarwady shelf reveals three distinct areas in terms of sediment texture (i) a near-shore mud belt in the Gulf of Martaban and adjacent inner shelf (ii) outer shelf relict sands and (iii) mixed sediments with varying proportions of relict sand and modern mud in the Martaban Canyon. The bulk of the terrigenous sediment discharged by the Ayeyarwady River is displaced eastwards by a combination of tidal currents and clockwise flowing SW monsoon current and deposited in the Gulf of Martaban resulting in shoaling of its water depths. Part of the sediment discharge reaches the deep Andaman Sea via the Martaban Canyon and the rest is transported westward into the Bay of Bengal by the counter-clockwise flowing NE monsoon currents.  相似文献   

6.
Vertical distribution of faecal pellets (FP), their sedimentation and the production rates of FP by mesozooplankton were studied during a cruise on and off the Iberian shelf in August 1998. The cruise was divided into two legs, each of them a short-term Lagrangian drift experiment. FP were collected with water bottles, with drifting sediment traps and during experiments carried out onboard the ship. The pellets were enumerated and their biovolumes and carbon contents (FPC) were calculated.The standing stock of FP in the upper 50 m was on average three times higher during the first on-shelf experiment than during the second off-shelf experiment. There were large diurnal variations, but no clear pattern emerged between day and night sampling. The vertical export of FPC from the upper, productive layer was on average one order of magnitude greater on the shelf (range 6–160 mg.m−2.d−1) compared to the off-shelf experiment (range 1–30 mg.m−2.d−1). FPC sedimentation explained 20% of the total POC export from the euphotic layer on the shelf, but <5% off the shelf. FP sedimentation was dominated by medium-sized cylindrical pellets (40–60 μm in diameter), but larger cylindrical pellets (60–100 μm in diameter) also played an important role. The smaller FP size fractions were never of any significance, in spite of the high abundance of smaller calanoid and cyclopoid copepods. The community production of FPs by mesozooplankton were calculated for the off shelf stations, and the average retention potential of FP in the upper 200 m was estimated to be 98%. Thus retention processes are clearly important for cross-shelf advection of FPs, their injection into the deep ocean and in the regulation of pelagic benthic coupling.  相似文献   

7.
Magnetic properties were measured on 370 vibrocores obtained from the outer continental shelf of the East China Sea, with the aim of reconstructing environmental changes during the late Quaternary. High SIRM/χ values (>25 kA m−1) found in stiff muds of late Pleistocene age suggest the presence of magnetic iron sulfides, especially greigite. Framboidal aggregates of greigite were further identified by scanning electron microscopy (SEM) and attached energy dispersive X-ray (EDAX) analyses, as well as powder X-ray diffraction (XRD) analyses of the magnetic separates. The occurrence of magnetic iron sulfides indicates the complex oxidation–reduction of the stiff muds, resulting from exposure and inundation during the last glacial maximum (LGM) and the post-glacial transgression, respectively.  相似文献   

8.
Alan Lees 《Marine Geology》1975,19(3):159-198
In modern, marine, carbonate sands from shelf areas between the equator and latitudes 60°S and 60°N several major grain associations can be distinguished.On open shelves (< 100 m water depth) there are two skeletal grain associations. One (chlorozoan) is virtually restricted to warm, tropical waters; the other (foramol) characterizes temperate waters but also extends into the tropics. The distribution of these two associations cannot be explained in terms of water temperature alone: salinity is suspected as being a further controlling factor. Indeed, a third skeletal association (chloralgal) appears to be characteristic of areas where salinity is higher than on open shelves.Non-skeletal grains, where present, can be grouped into two associations. In one, pellets are the only non-skeletal grains represented; in the other, ooliths and/or aggregate grains are also present. These non-skeletal associations are restricted to relatively warm waters, but temperature does not determine which one of the associations develops. Again, salinity seems important.As both salinity and temperature apparently influence the grain associations, an attempt is made to present the relationships diagrammatically. By using graph pairs of “maximum temperature/minimum salinity” and “minimum temperature/maximum salinity” (named S.T.A.R. diagrams after Salinity Temperature Annual Ranges), the various grain associations can be classed into separate salinity/temperature fields.Salinity and temperature often seem to have a mutual “compensating” effect. For example, even at high temperatures the chlorozoan association does not develop if the salinity falls below a certain value, but it develops at relatively low temperatures when salinity is sufficiently high.This “compensation” effect also appears on the S.T.A.R. diagram for non-skeletal associations. More striking here, however, is a relationship suggesting that development of the oolith/aggregate association is strongly dependent on salinity.Carbonate muds are not shown on the S.T.A.R. diagrams, but an attempt is made to assimilate them into the model.The S.T.A.R. diagrams have a predictive value. In principle, given salinity and temperature values for an area, the grain associations can be predicted. In fact, the prediction is one of “potential”, i.e. that which is to be expected provided any other necessary environmental conditions are satisfied. Predictions are presented for the shelves of an ideal ocean and of present-day oceans and seas. The S.T.A.R. diagrams thus provide the basis for a tentative global model of present-day shelf carbonate sedimentation.The special problems of land-locked seas are discussed with reference to the Mediterranean Sea and the Persian Gulf. Predictions are presented.To illustrate the possibilities of the S.T.A.R. diagram technique, an attempt at detailed prediction is given for an area — the Gulf of Batabano, Cuba — where the sediments are known and predictions can be checked.In conclusion, the problems inherent in applying the model to ancient sedimentary systems are briefly discussed.  相似文献   

9.
《Marine Geology》2005,216(4):275-296
Recent chirp seismic reflection data combined with multibeam bathymetry, backscatter, and analysis of grab samples and short cores provide evidence of significant recent erosion on the outer New Jersey shelf. The timing of erosion is constrained by two factors: (1) truncation at the seafloor of what is interpreted to be the transgressive ravinement surface at the base of the surficial sand sheet, and (2) truncation of apparently moribund sand ridges along erosional swales oriented parallel to the primary direction of modern bottom flow and oblique to the strike of the sand ridges. These observations place the erosion in a marine setting, post-dating the passage of the shoreface ravinement and the evolution of sand ridges that form initially in the near shore environment. Also truncated by marine erosion are shallowly buried, fluvial channel systems, formed during the Last Glacial Maximum and filled during the transgression, and a regional reflector “R” that is > ∼ 40 kyr. Depths of erosion range from a few meters to > 10 m. The seafloor within eroded areas is often marked by “ribbon” morphology, seen primarily in the backscatter data as areas of alternating high and low backscatter elongated in the direction of primary bottom flow. Ribbons are more occasionally observed in the bathymetry; where observed, crests exhibit low backscatter and troughs exhibit high backscatter. Sampling reveals that the high backscatter areas of the ribbons consist of a trimodal admixture of mud, sand and shell hash, with a bimodal distribution of abraded and unabraded sand grains and microfauna. The shell hash is interpreted to be an erosional lag, while the muds and unabraded grains are, in this non-depositional environment, evidence of recent erosion at the seafloor of previously undisturbed strata. The lower-backscatter areas of the ribbon morphology were found to be a well-sorted medium sand unit only a few 10's of cm thick overlying the shelly/muddy/sandy material. Concentrations of well-rounded gravels and cobbles were also found in eroded areas with very high backscatter, and at least one of these appears to be derived from the base of an eroded fluvial channel. Seafloor reworking over the transgressive evolution of the shelf appears to have switched from sand ridge evolution, which is documented to ∼ 40 m water depth, to more strictly erosional modification at greater water depths. We suggest that this change may be related to the reduction with water depth in the effectiveness of sediment resuspension by waves. Resuspension is a critical factor in the grain size sorting during transport by bottom currents over large bedforms like sand ridges. Otherwise, we speculate, displacement of sand by unidirectional currents will erode the seafloor.  相似文献   

10.
Unifite muds in intraslope basins,northwest gulf of Mexico   总被引:1,自引:0,他引:1  
Uniformly structureless clayey muds, very much like those termed unifites or homogenites in the Mediterranean and other basins, occur in intraslope basins in the northwest Gulf of Mexico. Their organic carbon and carbonate contents indicate a terrigenous source. Their age (about 17,000 B.P.) approximates the time when large-scale slumping of terrigenous delta fronts formed the Mississippi Canyon (Trough). Their compositional dissimiliarity to nearby hemiplagic mud precludes a homogenite-like origin involving a tsunami. However, it is uncertain whether they are end-products of bypassing (unifites) or entrapments of entire flows of sandless clays from deltaic facies of the same composition.  相似文献   

11.
Macrobenthic faunal composition was studied at six different depth ranges (30–50, 51–75, 76–100, 101–150, 151–175 and >176 m) in five transects (off Karaikkal, Parangipettai, Cuddalore‐SIPCOT, Cheyyur and Chennai) in the continental shelf of southeast coast of India. Eleven diverse taxa were found, comprising 113 species of polychaetes, 14 species of bivalves, 10 species of amphipods and ‘others’ (five tanaids, five crabs, four isopods, three echinoderms, two shrimps, two cnidarians, two fishes and one cephalochordate). Polychaetes were the dominant taxa, constituting 88.5% of the total abundance and 30.7% of the total biomass. The number of species (seven per 0.2 m2 at >176 m depth range in Chennai to 46 per 0.2 m2 at 30–50 m in Cheyyur), abundance (216 per 0.2 m2 at >176 m in Karaikkal to 353 per 0.2 m2 at 30–50 m in Cheyyur) and biomass (0.09 g per 0.2 m2 at 151–175 m in Karaikkal and 4.6 g per 0.2 m2 at 30–50 m in Cheyyur) of macrobenthos decreased with increase in depth. DO decreased gradually from 30 m depth; beyond 150 m, the decrease was pronounced due to the presence of the oxygen minimum zone. Using the distance based linear model (DISTLM), it was found that the environmental variables explained about 73.3% of the total variability in macrofaunal distribution. The heavy metals cobalt and mercury, as well as water pressure (proxy for depth), showed a significant relationship with macrofauna, explaining respectively 9, 7.3 and 7% of the total variability. The contribution of other variables was smaller.  相似文献   

12.
The paper illustrates the results of an experimental investigation of electrical parameters of glacier ice and first-year fast ice in the VHF frequency band, at the Antarctic Station Novolazarevskaya in the 27th Soviet Antarctic Expedition (SAE) (1982-1983). Distributions of electrical parameters in the glaciers are obtained for ice, firn-ice, and cold-firn zones. These zones differ from each other in the physical characteristics of their upper layers in the glacier. The results of the measurements have shown the difference in distributions for these zones as well as the significant variability of the refractive index and the specific attenuation in the firn-ice and cold-firn zones. The electrical parameters of first-year fast ice were measured not long before its breaking, so that they became the characteristics of the ice cover, having overcome the period of radiative heating and freshening.  相似文献   

13.
The interplay between the oxygen minimum zone and remotely-forced oxygenation episodes determines the fate of the benthic subsystem off the Central Peruvian coast. We analyzed a 12 year monthly time-series of oceanographic and benthic parameters at 94 m depth off Callao, Central Peru (12°S), to analyze: (i) near-bottom oxygen level on the continental shelf in relation to dynamic height on the equator (095°W); and (ii) benthic ecosystem responses to oxygen change (macrobiotic infauna, meiofauna, and sulphide-oxidizing bacteria, Thioploca spp.). Shelf oxygenation episodes occurred after equatorial dynamic height increases one month before, consistent with the propagation of coastal trapped waves. Several but not all of these episodes occurred during El Niños. The benthic biota responded to oxygenation episodes by undergoing succession through three major ecological states. Under strong oxygen deficiency or anoxia, the sediments were nearly defaunated of macro-invertebrates and Thioploca was scarce, such that nematode biomass dominated the macro- and meiobiotas. When frequency of oxygenation events reduced the periods of anoxia, but the prevailing oxygen range was 10–20 μmol L−1, mats of Thioploca formed and dominated the biomass. Finally, with frequent and intense (>40 μmol L−1) oxygenation, the sediments were colonized by macrofauna, which then dominated biomass. The Thioploca state evolved during the 2002–2003 weak EN, while the macrofauna state was developed during the onset of the strong1997–1998 EN. Repeated episodes of strong oxygen deficiency during the summer of 2004, in parallel with the occurrence of red tides in surface waters, resulted in the collapse of Thioploca mats and development of the Nematode state. Ecological interactions may affect persistence or the transition between benthic ecosystem states.  相似文献   

14.
Reinhardt  L.  Kudrass  H.-R.  Lückge  A.  Wiedicke  M.  Wunderlich  J.  Wendt  G. 《Marine Geophysical Researches》2002,23(4):335-351
About 6000 km of both bathymetric and high-resolution acoustic profiles were acquired on the shelf and upper slope offshore Peru between 9° S and 14° S. Two new sediment echosounder systems – SEL-96 and SES-2000DS – provided details of the sedimentary structures of the Quaternary sequences within the Sechura-Salaverry, Huacho and Pisco Basins. To a great extent, the poleward undercurrent determines the distribution of sediments. The undercurrent has generated numerous erosional unconformities, it has winnowed hardgrounds and has created mudwaves common between 250 m and 400 m water depth. Distinct subbottom reflectors within sedimentary units represent hiatuses due to periods of intensified winnowing or non-deposition. Erosional unconformities usually marked by pronounced reflectors suggest shifts of the undercurrent system related to climatic changes and eustatic variations of sea level. On a larger scale, the stacked prograding depositional sequences reflect the sea-level cycles of the Middle Pleistocene to the Holocene. Based on the stratigraphy of our piston cores and that of Ocean Drilling Program (ODP) Site 680, the depositional sequences limited by extended unconformities were assigned to oxygen isotope stages 1 to 7. Other sedimentary structures are small straight channels that were conduits for downslope sediment transport. Deformed sediments associated with synsedimentary normal faults result from creep movements indicating beginning slope failure.  相似文献   

15.
Hornblende is the least stable, and most diagnostic, mineral of the sediment blanketing the continental shelf off Georgia, U.S.A. Recent work by others has shown that the probable sources of hornblende-rich sands on the shelf are the Savannah and Altamaha Rivers, both of which originate in the southern Appalachian piedmont. Rivers with drainage basins confined to the coastal plain carry stable, low-hornblende heavy-mineral assemblages and contribute sediment to the shelf only during episodes of regression or transgression. Distribution of hornblende on the continental shelf reveals the importance of the Altamaha and Savannah Rivers, especially the Savannah, as sources of sediment. It is postulated that original point concentrations of hornblende-rich sand associated with Late Pleistocene deltas or estuaries of the Savannah River have been modified by southwest currents, possibly during winter storms. The resulting configuration is a series of northeast-trending, linear high-hornblende anomalies. The origin of the hornblende-distribution anomalies probably is identical to the origin of linear shoals that also trend northeast across the continental shelf.  相似文献   

16.
Surface sediments (10 cm) of the subtropical Pearl River estuary and adjacent shelf, Southern China were collected. Fatty acids and compound-specific carbon isotopic analyses were determined to infer their sources and biogeochemical cycle of this lipid in the subtropical Pearl River estuary and adjacent northern South China Sea (SCS). The total concentrations of fatty acids ranged from ∼1.28 to ∼42.25 μg g−1 dry weight. The levels of polyunsaturated fatty acids (PUFA) were low (0.2–4.8% of total fatty acids), suggesting that fatty acids derived from algae were effectively recycled during the whole settling and depositing process. Bacterial fatty acids were significantly high and terrigenous fatty acids were low in the sediments. Principal component analysis (PCA) of the data also indicates that a clear separation of the biogeochemical sources can be seen. The δ13C values of bacterial fatty acids, i.e., i/aiC15 (−22.9‰ to −29.4‰) suggest that bacteria within the sediments mainly utilize a labile pool of organic matter derived from algae for their growth in the subtropical Pearl River estuary system.  相似文献   

17.
Abstract

Sands and silty sands are the predominant surficial soils of continental shelves. Cohesive fine‐grained soils are typical off the mouths of large rivers, near bays and estuaries, and in basins located on the shelf. The stratigraphy of shelf soils is very poorly known for most engineering purposes, except in the vicinity of the Mississippi Delta.

Vibratory coring is the most common method of sampling shelf sands to depths of about 13 m; greater soil depths are sampled by borings often using drilling and wireline sampling tools. Employment of self‐contained or wireline static cone penetrometers to obtain in situ measurements of sands has not been as common in the United States as in Europe. Dynamic piston corers are the most common samplers in cohesive soils, but rotary and hydraulically activated incremental corers are becoming available for marine use. Self‐contained or wireline vane shear devices and static cone penetrometers are used for the in situ testing of cohesive soils, and the latter device is also used for cohesionless soils. Dynamic cone penetrometers have been developed and have had limited experimental use at sea. In situ electrical resistivity and nuclear‐transmission and backscatter probes have been used in cohesive soils to obtain bulk‐density and water‐content measurements and for stratigraphic correlation. Acoustical properties of cohesive and cohesionless soils have been measured by in situ probes and have been estimated from results of geophysical surveys made on ships that are under way.

Environmental hazards to the foundations of offshore structures include earthquakes, wave‐induced loading and scour, and burrowing animals. Reported bottom‐current velocities on the United States continental shelf appear to have maximums of about 0.5 m/s under fair‐weather conditions and greater than about 5 m/s under hurricane conditions. Cyclical loading of the seafloor induced by storm waves appears to be a major hazard to soil stability in some areas.

A representative sample of the widely scattered engineering and scientific literature of continental shelf marine geotechnics and geotechnically related subjects has been made to aid marine geologists, geotechnologists, and other specialists.  相似文献   

18.
A linear decrease in dissolved organic carbon and nitrogen with increasing salinity offshore from the Georgia coast suggests that organic nitrogen compounds contributed to coastal waters by rivers are stable during the period (2–3 months) of their transfer over the continental shelf. While the C/N ratio decreased with distance from shore, total dissolved organic nitrogen (DON), total amino nitrogen, and primary amino nitrogen showed similar relative decreases, suggesting that nitrogen is associated with refractory organic compounds. Measured amino nitrogen accounted for about 20% of the total DON, leaving about 80% of the organic nitrogen undefined.  相似文献   

19.
The Adriatic Sea is a modern epicontinental basin where the late Quaternary transgressive systems tract shows substantial variations within two contrasting shelf domains, separated by a 250-m-deep remnant basin: a lowgradient shelf in the north, and a steeper margin in the south. Four differentiated sedimentary responses reflect contrasting physiographic domains and differences in the ratio between oceanographic regime and sediment input during relative sea-level rise. The progressive widening of the Adriatic epicontinental shelf, up to seven times its low-stand extent, also determines variations in the style of transgressive deposition by controlling major changes in oceanographic circulation.  相似文献   

20.
The tectonically active islands of the Indo-Pacific Archipelago deliver much sediment to the ocean margins. In the Gulf of Papua on the south coast of Papua New Guinea (PNG), the chemical composition of surface sediment from grab samples indicates that Fly River muds are dispersed to the north and east, where they are joined by sediment plumes from the other large rivers along the south coast of PNG. This is the likely source of terrestrial sediment on the Papuan Plateau and the northern Coral Sea Abyssal Plain. The sediment is transported through submarine troughs and canyons offshore, far to the east of the riverine inputs. Immediately south and 30–50 km offshore from the Fly and Purari deltas is a platform of algal and reef carbonate materials, containing little or no terrestrial surface sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号