首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vehicle dynamics control (VDC) systems require information about system variables, which cannot be directly measured, e.g. the wheel slip or the vehicle side-slip angle. This paper presents a new concept for the vehicle state estimation under the assumption that the vehicle is equipped with the standard VDC sensors. It is proposed to utilise an unscented Kalman filter for estimation purposes, since it is based on a numerically efficient nonlinear stochastic estimation technique. A planar two-track model is combined with the empiric Magic Formula in order to describe the vehicle and tyre behaviour. Moreover, an advanced vertical tyre load calculation method is developed that additionally considers the vertical tyre stiffness and increases the estimation accuracy. Experimental tests show good accuracy and robustness of the designed vehicle state estimation concept.  相似文献   

2.
Advanced empirical, and physical-based tyre models have proven to be accurate for simulating tyre dynamics; however, these tyre models typically require expensive and intensive tyre parameterisation. Recent research into wheeled unmanned ground vehicles requiring vertical force analysis has shown good results using a simple linear spring model for the tyre which demonstrate the continued use for simple tyre models; however, parameterisation of the tyre still remains a challenge when load test equipment is not available. This paper presents a cost-effective tyre vertical stiffness parameterisation procedure using only measured tyre geometry and air pressure for applications where high-fidelity tyre models are unnecessary. Vertical forces calculated through an air volume optimisation approach are used to estimate tyre vertical stiffness. Nine tyres from the literature are compared to evaluate the performance of the vertical force estimation and stiffness parameterisation algorithms. Experimental results on a pair of ATV tyres are also presented.  相似文献   

3.
This paper qualitatively and quantitatively reviews and compares three typical tyre–road friction coefficient estimation methods, which are the slip slope method, individual tyre force estimation method and extended Kalman filter method, and then presents a new cost-effective tyre–road friction coefficient estimation method. Based on the qualitative analysis and the numerical comparisons, it is found that all of the three typical methods can successfully estimate the tyre force and friction coefficient in most of the test conditions, but the estimation performance is compromised for some of the methods during different simulation scenarios. In addition, all of these three methods need global positioning system (GPS) to measure the absolute velocity of a vehicle. To overcome the above-mentioned problem, a novel cost-effective estimation method is proposed in this paper. This method requires only the inputs of wheel angular velocity, traction/brake torque and longitudinal acceleration, which are all easy to be measured using available sensors installed in passenger vehicles. By using this method, the vehicle absolute velocity and slip ratio can be estimated by an improved nonlinear observer without using GPS, and the friction force and tyre–road friction coefficient can be obtained from the estimated vehicle velocity and slip ratio. Simulations are used to validate the effectiveness of the proposed estimation method.  相似文献   

4.
It is well known that vehicle slip angle is one of the most difficult parameters to measure on a vehicle during testing or racing activities. Moreover, the appropriate sensor is very expensive and it is often difficult to fit to a car, especially on race cars. We propose here a strategy to eliminate the need for this sensor by using a mathematical tool which gives a good estimation of the vehicle slip angle. A single-track car model, coupled with an extended Kalman filter, was used in order to achieve the result. Moreover, a tuning procedure is proposed that takes into consideration both nonlinear and saturation characteristics typical of vehicle lateral dynamics. The effectiveness of the proposed algorithm has been proven by both simulation results and real-world data.  相似文献   

5.
A sliding-mode observer is designed to estimate the vehicle velocity with the measured vehicle acceleration, the wheel speeds and the braking torques. Based on the Burckhardt tyre model, the extended Kalman filter is designed to estimate the parameters of the Burckhardt model with the estimated vehicle velocity, the measured wheel speeds and the vehicle acceleration. According to the estimated parameters of the Burckhardt tyre model, the tyre/road friction coefficients and the optimal slip ratios are calculated. A vehicle adaptive sliding-mode control (SMC) algorithm is presented with the estimated vehicle velocity, the tyre/road friction coefficients and the optimal slip ratios. And the adjustment method of the sliding-mode gain factors is discussed. Based on the adaptive SMC algorithm, a vehicle's antilock braking system (ABS) control system model is built with the Simulink Toolbox. Under the single-road condition as well as the different road conditions, the performance of the vehicle ABS system is simulated with the vehicle velocity observer, the tyre/road friction coefficient estimator and the adaptive SMC algorithm. The results indicate that the estimated errors of the vehicle velocity and the tyre/road friction coefficients are acceptable and the vehicle ABS adaptive SMC algorithm is effective. So the proposed adaptive SMC algorithm can be used to control the vehicle ABS without the information of the vehicle velocity and the road conditions.  相似文献   

6.
Knowledge of vehicle dynamics data is important for vehicle control systems that aim to enhance vehicle handling and passenger safety. This study introduces observers that estimate lateral load transfer and wheel–ground contact normal forces, commonly known as vertical forces. The proposed method is based on the dynamic response of a vehicle instrumented with cheap and currently available standard sensors. The estimation process is separated into three blocks: the first block serves to identify the vehicle’s mass, the second block contains a linear observer whose main role is to estimate the roll angle and the one-side lateral transfer load, while in the third block we compare linear and nonlinear models for the estimation of four wheel vertical forces. The different observers are based on a prediction/estimation filter. The performance of this concept is tested and compared with real experimental data acquired using the INRETS-MA (Institut National de Recherche sur les Transports et leur Sécurité – Département Mécanismes d’Accidents) Laboratory car. Experimental results demonstrate the ability of this approach to provide accurate estimation, thus showing its potential as a practical low-cost solution for calculating normal forces.  相似文献   

7.
In this paper, a reduced-order sliding mode observer (RO-SMO) is developed for vehicle state estimation. Several improvements are achieved in this paper. First, the reference model accuracy is improved by considering vehicle load transfers and using a precise nonlinear tyre model ‘UniTire’. Second, without the reference model accuracy degraded, the computing burden of the state observer is decreased by a reduced-order approach. Third, nonlinear system damping is integrated into the SMO to speed convergence and reduce chattering. The proposed RO-SMO is evaluated through simulation and experiments based on an in-wheel motor electric vehicle. The results show that the proposed observer accurately predicts the vehicle states.  相似文献   

8.
Various active safety systems proposed for articulated heavy goods vehicles (HGVs) require an accurate estimate of vehicle sideslip angle. However in contrast to passenger cars, there has been minimal published research on sideslip estimation for articulated HGVs. State-of-the-art observers, which rely on linear vehicle models, perform poorly when manoeuvring near the limits of tyre adhesion. This paper investigates three nonlinear Kalman filters (KFs) for estimating the tractor sideslip angle of a tractor–semitrailer. These are compared to the current state-of-the-art, through computer simulations and vehicle test data. An unscented KF using a 5 degrees-of-freedom single-track vehicle model with linear adaptive tyres is found to substantially outperform the state-of-the-art linear KF across a range of test manoeuvres on different surfaces, both at constant speed and during emergency braking. Robustness of the observer to parameter uncertainty is also demonstrated.  相似文献   

9.
ABSTRACT

This paper presents state-of-the art within advanced vehicle dynamics of heavy trucks with the perspective of road safety. The most common accidents with heavy trucks involved are truck against passenger cars. Safety critical situations are for example loss of control (such as rollover and lateral stability) and a majority of these occur during speed when cornering. Other critical situations are avoidance manoeuvre and road edge recovery. The dynamic behaviour of heavy trucks have significant differences compared to passenger cars and as a consequence, successful application of vehicle dynamic functions for enhanced safety of trucks might differ from the functions in passenger cars. Here, the differences between vehicle dynamics of heavy trucks and passenger cars are clarified. Advanced vehicle dynamics solutions with the perspective of road safety of trucks are presented, beginning with the topic vehicle stability, followed by the steering system, the braking system and driver assistance systems that differ in some way from that of passenger cars as well.  相似文献   

10.
ABSTRACT

Most modern day automotive chassis control systems employ a feedback control structure. Therefore, real-time estimates of the vehicle dynamic states and tire-road contact parameters are invaluable for enhancing the performance of vehicle control systems, such as anti-lock brake system (ABS) and electronic stability program (ESP). Today's production vehicles are equipped with onboard sensors (e.g. a 3-axis accelerometer, 3-axis gyroscope, steering wheel angle sensor, and wheel speed sensors), which when used in conjunction with certain model-based or kinematics-based observers can be used to identify relevant tire and vehicle states for optimal control of comfort, stability and handling. Vehicle state estimation is becoming ever more relevant with the increased sophistication of chassis control systems. This paper presents a comprehensive overview of the state-of-the-art in the field of vehicle and tire state estimation. It is expected to serve as a resource for researchers interested in developing vehicle state estimation algorithms for usage in advanced vehicle control and safety systems.  相似文献   

11.
In this article, a new approach to estimate the vehicle tyre forces, tyre–road maximum friction coefficient, and slip slope is presented. Contrary to the majority of the previous work on this subject, a new tyre model for the estimation of the tyre–road interface characterisation is proposed. First, the tyre model is built and compared with those of Pacejka, Dugoff, and one other tyre model. Then, based on a vehicle model that uses four degrees of freedom, an extended Kalman filter (EKF) method is designed to estimate the vehicle motion and tyre forces. The shortcomings of force estimation are discussed in this article. Based on the proposed tyre model and the improved force measurements, another EKF is implemented to estimate the tyre model parameters, including the maximum friction coefficient, slip slope, etc. The tyre forces are accurately obtained simultaneously. Finally, very promising results have been achieved for pure acceleration/braking for varying road conditions, both in pure steering and combined manoeuvre simulations.  相似文献   

12.
This article describes a method of vehicle dynamics estimation for impending rollover detection. This method is evaluated via a professional vehicle dynamics software and then through experimental results using a real test vehicle equipped with an inertial measurement unit. The vehicle dynamic states are estimated in the presence of the road bank angle (as a disturbance in the vehicle model) using a robust observer. The estimated roll angle and roll rate are used to compute the rollover index which is based on the prediction of the lateral load transfer. In order to anticipate the rollover detection, a new method is proposed in order to compute the time-to-rollover using the load transfer ratio. The used nonlinear model is deduced from the vehicle lateral dynamics and is represented by a Takagi–Sugeno (TS) fuzzy model. This representation is used in order to take into account the nonlinearities of lateral cornering forces. The proposed TS observer is designed with unmeasurable premise variables in order to consider the non-availability of the slip angles measurement. Simulation results show that the proposed observer and rollover detection method exhibit good efficiency.  相似文献   

13.
Dual extended Kalman filter for vehicle state and parameter estimation   总被引:2,自引:0,他引:2  
The article demonstrates the implementation of a model-based vehicle estimator, which can be used for combined estimation of vehicle states and parameters. The estimator is realised using the dual extended Kalman filter (DEKF) technique, which makes use of two Kalman filters running in parallel, thus 'splitting' the state and parameter estimation problems. Note that the two problems cannot be entirely separated due to their inherent interdependencies. This technique provides several advantages, such as the possibility to switch off the parameter estimator, once a sufficiently good set of estimates has been obtained. The estimator is based on a four-wheel vehicle model with four degrees of freedom, which accommodates the dominant modes only, and is designed to make use of several interchangeable tyre models. The paper demonstrates the appropriateness of the DEKF. Results to date indicate that this is an effective approach, which is considered to be of potential benefit to the automotive industry.  相似文献   

14.
This paper presents a model for three-dimensional, heavy vehicle-pavement-foundation coupled system, which is modelled as a seven-DOF vehicle moving along a simply supported double-layer rectangular thin plate on a linear viscoelastic foundation. The vertical tyre force is described by a single point-contact model, while the pavement-foundation is modelled as a double-layer plate on a linear viscoelastic foundation. Using the Galerkin method and quick direct integral method, the dynamical behaviour of the vehicle-pavement-foundation coupled system is investigated numerically and compared with that of traditional vehicle system and pavement system. The effects of coupling action on vehicle body vertical acceleration, suspension deformations, tyre forces and pavement displacements are also obtained. The investigation shows that the coupling action could not be neglected even on a smooth road surface, such as highway. Thus, it is necessary to investigate the dynamics of vehicle and pavement simultaneously based on the vehicle-pavement-foundation coupled system.  相似文献   

15.
The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.  相似文献   

16.
Considering the controllability and observability of the braking torques of the hub motor, Integrated Starter Generator (ISG), and hydraulic brake for four-wheel drive (4WD) hybrid electric cars, a distributed and self-adaptive vehicle speed estimation algorithm for different braking situations has been proposed by fully utilising the Electronic Stability Program (ESP) sensor signals and multiple powersource signals. Firstly, the simulation platform of a 4WD hybrid electric car was established, which integrates an electronic-hydraulic composited braking system model and its control strategy, a nonlinear seven degrees-of-freedom vehicle dynamics model, and the Burckhardt tyre model. Secondly, combining the braking torque signals with the ESP signals, self-adaptive unscented Kalman sub-filter and main-filter adaptable to the observation noise were, respectively, designed. Thirdly, the fusion rules for the sub-filters and master filter were proposed herein, and the estimation results were compared with the simulated value of a real vehicle speed. Finally, based on the hardware in-the-loop platform and by picking up the regenerative motor torque signals and wheel cylinder pressure signals, the proposed speed estimation algorithm was tested under the case of moderate braking on the highly adhesive road, and the case of Antilock Braking System (ABS) action on the slippery road, as well as the case of ABS action on the icy road. Test results show that the presented vehicle speed estimation algorithm has not only a high precision but also a strong adaptability in the composite braking case.  相似文献   

17.
基于LO-EKF算法的分布驱动电动汽车状态估计的研究   总被引:2,自引:0,他引:2  
本文中对分布式驱动电动汽车的状态估计进行研究。首先利用龙伯格状态观测器实时观测对车辆的状态估计影响较大的路面坡度,接着,提出了采用扩展卡尔曼滤波算法,以车辆ESP传感器所获取的数据信息作为观测值,对分布式驱动电动汽车的动力学状态变量进行估计。最后进行Carsim和MATLAB联合仿真。结果表明,基于扩展卡尔曼滤波和龙伯格观测器的车辆状态估计算法能较好的估算出车辆的相关动力学状态值,算法可行,收敛速度较快。  相似文献   

18.
A method for detecting wheel slip/slide and re-adhesion control of AC traction motors in railway applications is presented in this paper. This enables a better utilisation of available adhesion and could also reduce wheel wear by reducing high creep values. With this method, the wheel–rail (roller) creepage, creep force and friction coefficient can be indirectly detected and estimated by measuring the voltage, current and speed of the AC traction motor and using an extended Kalman filter. The re-adhesion controller is designed to regulate the motor torque command according to the maximum available adhesion based on the estimated results. Simulations under different friction coefficients are carried out to test the proposed method.  相似文献   

19.
Fault detection is considered to be one way to improve system reliability and dependability for railway vehicles. The secondary lateral and anti-yaw dampers are the most critical parts in railway suspension systems. So far, the dampers have been modelled as linear components in the fault detection and isolation observer design. In this work, a Hybrid Extended Kalman filter is used to capture the nonlinear characteristics of the dampers. In order to detect and isolate faults, a nonlinear residual generator is developed, which can distinguish clearly between different types of faults. A lateral half train model serves as an example for the proposed technique. The results show that failures in the nonlinear suspension system can be detected and isolated accurately.  相似文献   

20.
为提高网络延迟攻击下自动驾驶车辆定位估计算法的精确度,研究了延迟模型下自动驾驶车辆定位的无偏差有限脉冲响应(UFIR)估计器设计方法,并仿真实验.搭建延迟攻击下的车辆运动学模型,拓展模型至有限长度的时间窗口,推导UFIR算法按批处理式与迭代式表达形式,分析Apollo系统各功能模块的数据流动,基于LG开源自动驾驶仿真器...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号