首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
基于CSMC 0.18 μm工艺,设计了一款瞬态增强的无片外电容LDO。设计误差放大器时,采用改进的第2级放大器提高功率管栅端的充放电速度,从而提高瞬态响应。采用嵌套密勒补偿方式来保证LDO的稳定性。仿真结果表明,输入电压为2~4.5 V时,LDO的输出电压为1.8 V,负载电流在1~300 mA之间具有良好的稳定性,响应时间为1.4 μs,最大过冲电压为84 mV。  相似文献   

2.
陈文凯  李斌  吴朝晖 《微电子学》2017,47(4):505-509
提出了一种用于片内数字驱动的瞬态增强NMOS低压差线性稳压器(LDO)。该LDO采用电容耦合动态偏置和双环路推挽式驱动调整管,极大地提高了电路的瞬态响应速度。基于0.35 μm BCD工艺的仿真结果表明,负载电流在0.1~100 mA之间的跃迁时间为100 ns时,电路的下冲电压为42 mV,过冲电压为66 mV,稳定时间仅为323 ns。该LDO电路的总体静态电流约为50 μA,输出电流最大值为100 mA。  相似文献   

3.
周玉成  廖德阳  马磊  桑磊  黄文 《微电子学》2023,53(4):608-613
提出了一种稳定性高、瞬态特性良好、无片外电容的低压差线性稳压器(LDO)。采用推挽式微分器检测负载瞬态变化引起的输出电压变化,加大对功率管栅极寄生电容的充放电电流,增强系统的瞬态响应能力;在误差放大器后接入缓冲级,将功率管栅极极点推向高频,并采用密勒电容进行频率补偿,使系统在全负载范围内稳定。基于TSMC 65 nm CMOS工艺进行流片,核心电路面积为0.035 mm2。测试结果表明,最低供电电压为1.1 V时,压降仅为100 mV,负载电流1 μs内在1 mA和150 mA之间跳变时,LDO的最大输出过冲电压与下冲电压分别为200 mV和180 mV。  相似文献   

4.
提出了一种缓冲器阻抗动态调整的LDO结构。采用并联负反馈和阻抗动态调整技术,显著降低了缓冲级的输出阻抗,没有增加额外的静态电流,功率管栅极极点始终远在单位增益带宽之外,对稳定性没有影响。该缓冲级增大了功率管栅极的摆率,提高了LDO瞬态响应性能。基于TSMC 0.18 μm 3.3 V CMOS工艺进行设计,该LDO的输出电压为1.8 V,压差电压为0.2 V,最大输出电流为100 mA。仿真结果显示,LDO的静态电流只有5 μA,当负载电流在10 ns内从0 mA跳变到100 mA时,输出欠冲和过冲电压分别为88.2 mV和34.8 mV。  相似文献   

5.
《中国集成电路》2023,(3):26-30+64
针对SoC中电源管理模块对高功能-面积比和高瞬态响应的需求,本文提出一种基于翻转电压跟随器(FVF)的无片外电容低压差线性稳压器(LDO),采用电压峰值检测技术实现动态电流偏置,进而提升系统瞬态响应。基于SMIC 40nm工艺的仿真结果表明,在典型负载切换状态下,提出方案的下冲和上冲恢复时间相比传统的FVF结构LDO电路分别缩短了75%和29%。  相似文献   

6.
王超  姚若河  邝国华 《微电子学》2018,48(5):625-629
针对无片外电容LDO,在误差放大器与功率管之间添加缓冲器,采用频率补偿的方法,提高了环路稳定性。通过检测负载瞬态变化引起的误差放大器输出电压变化,增加对功率管栅极电容的充放电电流,提升了系统的快速瞬态响应能力。基于TSMC 0.18 μm标准CMOS工艺,设计了一种输入电压范围为1.92~3.60 V、输出电压为1.8 V的LDO。结果表明,负载在1 μs内从0变化到100 mA时,输出最大下冲电压为37.2 mV,响应时间为1.12 μs;负载在1 μs内从100 mA变化到0时,输出最大过冲电压为40.1 mV,响应时间为1.1 μs。  相似文献   

7.
基于SMIC 0.18 μm CMOS工艺,设计了一款输入电压为1.8 V、输出电压为1.6 V的低功耗无片外电容低压差线性稳压器(LDO),其静态电流仅为5 μA。该电路采用一种新型摆率增强电路,通过检测输出电压的变化实现对功率管的瞬态调节。片内采用密勒补偿使主次极点分离,整个系统在负载范围内具有良好的稳定性。仿真结果显示,该LDO在负载电流以99 mA/1 μs跳变时,输出电压下冲为59 mV,上冲为60 mV,响应时间约为1.7 μs。  相似文献   

8.
利用RC高通电路的思想,针对LDO提出了一种新的瞬态增强电路结构。该电路设计有效地加快了LDO的瞬态响应速度,而且瞬态增强电路工作的过程中,系统的功耗并没有增加。此LDO芯片设计采用SMIC公司的0.18μmCMOS混合信号工艺。仿真结果表明:整个LDO是静态电流为3.2μA;相位裕度保持在90.19°以上;在电源电压为1.8 V,输出电压为1.3 V的情况下,当负载电流在10 ns内由100 mA降到50 mA时,其建立时间由原来的和28μs减少到8μs;而在负载电流为100 mA的条件下,电源电压在10 ns内,由1.8 V跳变到2.3 V时,输出电压的建立时间由47μs降低为15μs。  相似文献   

9.
王瑄  王卫东 《微电子学》2019,49(5):674-679
提出了一种基于翻转电压跟随器(FVF)的无片外电容低压差线性稳压器(LDO)。采用电压检测器来检测输出电压,大幅改善了瞬态响应,克服了常规LDO面积大、需要使用片内大电容的缺点,仅消耗了额外的静态电流。该LDO采用90 nm CMOS工艺进行设计与仿真,面积为0.009 6 mm2,输入电压为1.2 V,压差为200 mV。结果表明,在50 pF负载电容、3~100 mA负载电流、300 ns跃迁时间的条件下,产生的上冲电压为65 mV,瞬态恢复时间为1 μs,产生下冲电压为89 mV,瞬态恢复时间为1.4 μs,且将负载调整率性能改善到0.02 mV/mA。  相似文献   

10.
田霖  尹勇生  邓红辉 《微电子学》2024,54(2):214-220
基于SMIC 0.18 μm BCD工艺设计了一种低静态电流、高瞬态响应的无片外电容 低压差线性稳压器(Low Dropout Regulator, LDO)。误差放大器采用一种跨导提升技术,在低静态电流的情况下,实现更高的环路增益及单位增益带宽。由于采用高增益误差放大器,可以通过适当减少功率管尺寸来增强瞬态响应。采用有源反馈,在不引入额外静态电流情况下,增大环路的次极点。同时当LDO输出电压变化时,能够增大功率管栅极的动态电流,实现高瞬态响应。此外在有源反馈的基础上,采用反馈电阻并联小电容的方式,以提高环路稳定性。利用Cadence Spectre软件对LDO进行仿真验证。结果显示,LDO的静态电流仅为10 μA;在负载电流为1 mA的情况下,相位裕度最高可达70.9°;LDO负载电流在500 ns内从1 mA切换到100 mA时,下冲电压为134.7 mV,下冲电压恢复时间为1 μs;负载电流在500 ns内从100 mA切换到1 mA时,过冲电压为155.5 mV,过冲电压恢复时间为430 ns。  相似文献   

11.
An ultra-low power output-capacitorless low-dropout (LDO) regulator with a slew-rate-enhanced (SRE)circuit is introduced.The increased slew rate is achieved by sensing the transient output voltage of the LDO and then charging (or discharging) the gate capacitor quickly.In addition,a buffer with ultra-low output impedance is presented to improve line and load regulations.This design is fabricated by SMIC 0.18 μm CMOS technology.Experimental results show that,the proposed LDO regulator only consumes an ultra-low quiescent current of 1.2 μA.The output current range is from 10 μA to 200 mA and the corresponding variation of output voltage is less than 40 mV.Moreover,the measured line regulation and load regulation are 15.38 mV/V and 0.4 mV/mA respectively.  相似文献   

12.
In this paper, a new architecture of a fully integrated low-dropout voltage regulator (LDO) is presented. It is composed of hybrid architecture of NMOS/PMOS power transistors to relax stability requirements and enhance the transient response of the system. The LDO is capable of producing a stable output voltage of 1.1 V from 1.3 V single supply with recovery settling time about 680 nsec. It can supply current from 10 µA to 100 mA consuming quiescent current of 20.5 µA and 95 µA, respectively. It supports load capacitance from 0 to 50 pF with phase margin that increases from 43° at low load (10 µA) to 74° at high load (100 mA) and power supply rejection ratio (PSRR) less than −20 dB up to 100 kHz. The proposed LDO is designed in 130 nm CMOS technology and occupies an area of 0.11 mm2. Post layout simulations show better performance compared with other reported techniques.  相似文献   

13.
We present a CMOS low-dropout voltage regulator with a high-speed NMOS compact driver suitable for supplying on-chip voltages for the digital core of a SoC. The LDO is part of a power management controller hardblock integrated within a microcontroller. The die area of the circuit implemented in a 90 nm CMOS process is only 0.054 mm2. Experimental results show that the developed LDO can supply up to 15 mA and it presents a very fast transient response, with a settling time of approximately 30 ns and a voltage drop of 200 mV when the load current changes from 100 nA to 9 mA.  相似文献   

14.
15.
A low power output-capacitor-free low-dropout (LDO) regulator, with subthreshold slew-rate enhancement technique, has been proposed and simulated using a standard 0.18 μm CMOS process in this paper. By utilizing such a technique, proposed LDO is able to achieve a fast transient response. Simulation results verify that the recovery time is as short as 7 μs and the maximum undershoot and overshoot are as low as 55 mV and 30 mV, respectively. In addition, the slew-rate enhancement circuit works in the subthreshold region at steady state, and proposed LDO consumes a 46.4-μA quiescent current to provide a maximum 100-mA load with a minimum 0.2-V dropout voltage. Besides, excellent line and load regulations are obtained and the values are 0.37 mV/V and 2 μV/mA, respectively.  相似文献   

16.
A 3 A sink/source G_m-driven CMOS low-dropout regulator(LDO),specially designed for low input voltage and low cost,is presented by utilizing the structure of a current mirror G_m(transconductance)driving technique,which provides high stability as well as a fast load transient response.The proposed LDO was fabricated by a 0.5μm standard CMOS process,and the die size is as small as 1.0 mm~2.The proposed LDO dissipates 220μA of quiescent current in no-load conditions and is able to deliver up to 3 A of load current.The measured results show that the output voltage can be resumed within 2μs with a less than 1mV overshoot and undershoot in the output current step from-1.8 to 1.8 A with a 0.1μs rising and falling time at three 10μF ceramic capacitors.  相似文献   

17.
A low-dropout regulator with a wide-bandwidth feedforward supply noise cancellation path for enhancing supply noise rejection at middle-to-high frequency is presented in this paper. This idea has been realized by a bandpass filter and a signal-nulling technique with the help of a voltage buffer. For the PSR filter design, the total on-chip capacitance is about 18.75 pF. This circuit has been implemented in a 0.35 µm CMOS process and occupies an active chip area of 0.062 mm2. From the experimental results, the proposed LDO can operate with nominal dropout voltage of 200 mV at maximum load of 25 mA and quiescent current of 26 μA. It achieves a power-supply rejection better than ?59 dB up to 10 MHz with a 4 μF output capacitor.  相似文献   

18.
本文设计了一款可以灌入(sink)和拉出(source)3A电流,低电源、低功耗的CMOS低漏失电压线性稳压器。采用电流镜像结Gm(跨导)驱动的LDO架构可以获得高稳定性和快速负载瞬态响应。基于UMC 0.5um标准CMOS工艺投片验证,芯片面积为1.0mm2。空载时该LDO静态电流为220uA,最大带载3A。测试表明,使用30uF陶瓷电容,在-1.8A到 1.8A 0.1us负载跳变时,该LDO可以在低于2us的时间达到稳态,且过冲小于1mV。  相似文献   

19.
A 3-A CMOS low-dropout regulator with adaptive Miller compensation   总被引:3,自引:0,他引:3  
A 3-A CMOS low-dropout regulator (LDO) is presented by utilizing adaptive Miller compensation (AMC) technique, which provides high stability, as well as fast line and load transient responses. The proposed LDO has been fabricated in a standard 0.5 μm CMOS technology, and the die area is small as 1330 μm × 1330 μm with the area-efficient waffle layout for power transistors. Both load and line regulation are less than ±0.1%. And the output voltage can recover within 80 μs for full load changes. The power–supply rejection ratio (PSRR) at 20 KHz is −30 dB. Moreover, it is stable enough with a ceramic capacitor small to 2.2 μF, and the added series resistance is not needed. Xinquan Lai received his BSc degree in Technical Physics in 1987, and MSc degree in Electronic Engineering in 1993, both from the Xidian University, Xi’an, China. And he received a PhD degree in Computer Science & Engineering from the Northwestern Polytechnical University (NPU) in 1998. He is currently a professor in Xidian University. His present research interests include mixed signal VLSI/ASIC and SOC design, CMOS Sensor, and power management IC design, validation, test and other relative theories. Jianping Guo was born in Jiangxi, P.R. China in 1981. He received the BSc and MSc degrees in electronic engineering from Xidian University, Xi’an, China, in 2003 and 2006, respectively. He is currently severed as power management IC engineer in Xi’an Deheng Microelectronic Inc. His research interest involves power management IC design such as LDO linear regulator, DC-DC switching regulator etc. Zuozhi Sun was born in Zhejiang, P. R. China in 1978. He received the BSc and MSc degrees in electronic engineering from Xidian University, Xi’an, China, in 2000 and 2003, respectively. He joined Xi’an Deheng Microelectronic Inc. in 2003, where he works on development of power management IC. His research interest involves power management IC, audio amplifier etc. Jianzhang Xie received his BSc and MSc degrees in electronic engineering from Xidian University, Xi’an, China, in 1998 and 2005, respectively. He joined AIWA (Shenzhen) Ltd. as an electronic circuit designer in 1998, and now he is severed as an analog and mixed IC engineer in RENEX Technology (Shanghai) Ltd. His research interest involves power management IC, PLLs and high speed communication circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号