首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
饱水灰岩巴西试验准静态加载应变率效应研究   总被引:1,自引:0,他引:1  
通过对饱水灰岩进行不同加载应变率巴西试验、实时声发射监测以及破裂面扫描电镜观察,试验研究了应变率对饱水灰岩强度及破裂机制的影响。结果表明:1饱水对灰岩强度有明显的弱化作用,其拉伸强度值与干燥时相比降低了约15.99%;2声发射特征会受到加载速率的影响,试样中出现最大声发射事件数会随着应变率的增大而增大;3较低应变率(3.0×10-4s-1和9.0×10-4s-1)时灰岩破裂细观机制为沿晶破裂模式,宏观上拉伸强度较低;当应变率增大至1.5×10-3s-1时细观上为沿晶与穿晶耦合断裂模式,宏观上拉伸强度较高,而应变率为1.0×10-2s-1时细观上为穿晶断裂模式,宏观上拉伸强度最高。基于试验结果,采用三维颗粒流(PFC3D)分析了饱水灰岩加速速率效应细观机理。模拟显示,较低应变率下荷载–位移曲线表现为脆性,而随着应变率的提高曲线延性增大。灰岩拉伸强度随着应变率的提高近似线性增大。边界能与拉伸强度呈现为正比关系,灰岩破坏所消耗的能量与微裂纹数均随着应变率增大而增加。  相似文献   

2.
为探究动态加载条件下层状板岩的各向异性行为,采用分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)获得江西层状板岩在高应变率下5组层理面倾角(θ=0°,30°,45°,60°和90°)临界破坏状态力学特征及破坏机制,进而利用元件组合模型理论,建立考虑宏观层理影响的层状岩体动态损伤本构模型。试验及理论分析结果表明:各层理角度试样应力–应变曲线峰值大小不同,但总体变化规律相近,均包含加载前期的弹性压缩阶段,中期的塑形阶段和塑性加强阶段,以及达到峰值后的峰后曲线;临界破坏状态下层理面在试样的破坏中起到重要作用,除θ=0°为穿越层理面的劈裂破坏外,其余层理倾角的破坏模式主要包括:偏向层理面方向的剪切破坏、沿层理面的滑移破坏和沿层理面的劈裂破坏。新建立的层状岩体动态损伤本构模型,综合考虑岩体自身微观损伤和宏观层理面损伤叠加影响,该模型不仅能较好地描述冲击条件下层状岩体应力–应变曲线变化规律,且峰值强度吻合较好,有助于更为准确地描述层状板岩在高应变率下变形破坏行为。  相似文献   

3.
从某场地钻取典型花岗岩岩芯试样,借助75 mm直径SHPB装置和低温冻结设备,分别对-15 ℃和25 ℃饱水花岗岩试件施加应变率大小近乎相等的4种冲击荷载,以探究饱水冻结花岗岩动力学特性的应变率效应。试验结果表明:同等应变率冲击加载下,饱水冻结花岗岩的峰值强度更高,抗剪切强度增加,动态弹性模量变为近似直线型增长;相比25 ℃饱水花岗岩,-15 ℃饱水冻结花岗岩破坏需要更高的冲击应变率,破坏时的峰值应变减小。饱水冻结花岗岩内部复合结构裂纹的形成与耗散能紧密相关,耗散能越大,裂纹越多,用耗散能表征的损伤变量值可以判断岩石的破碎程度,-15 ℃冻结饱水花岗岩破坏时的损伤变量值为0.22。研究方法为确定高寒地区冻结岩体的动力学参数提供依据。  相似文献   

4.
深部岩石工程围岩处于三高一扰动的复杂地质环境,岩石的力学性质表现出与浅部岩石不同的特征。因此研究温度损伤后岩石在不同含水条件下动态压缩特性在岩石工程中具有重要意义。研究选取均质的细颗粒房山大理岩,利用自主研发的50 mm直径的分离式霍普金森杆压杆(split Hopkinson pressure bar,SHPB)系统,进行4种温度(25℃,105℃,450℃,700℃)损伤梯度下,干燥和饱水2种状态的单轴动态压缩加载试验;研究小孔隙率岩石温–水作用下的动态压缩特性。研究结果表明:随着温度的增加,大理岩的纵波波速均呈先上升后下降趋势,超过450℃时下降幅度明显;在试验所得加载率范围内,每级温度载荷下大理岩的动态压缩强度均有明显的率相关性,且和室温相比其他温度下岩石动态强度随着加载率的增加更加明显;当加载率一定时,温度损伤后干燥状态的岩石动态抗压强度随着温度的升高呈现明显的下降趋势,饱水状态的岩石呈现同样的变化趋势。经过105℃处理的损伤岩石,饱水和干燥状态下动态压缩强度近乎一致,而在450℃条件下,饱和岩石的动态压缩强度比干燥条件岩石的动态强度有所增加,压缩强度存在饱水强化现象,在700℃条件下,损伤岩石的饱水强化现象更加明显,并在高加载率下(加载率大于1500GPa/s),随着加载率的增加饱水大理岩动态强度增加较干燥大理岩更快。  相似文献   

5.
为探讨静载煤样受动力扰动作用下失稳破坏的能量耗散特征,利用改进SHPB试验系统对不同饱水状态煤样进行动静组合加载试验,分析含水煤样在冲击过程中能量耗散特征,得到试样的破碎块度、分维与能耗密度的关系。研究结果表明:3种饱水状态煤样的入射能与能耗密度均呈正相关;耗散率与透射率随着饱水时间的增加均呈逐渐降低,反射率随饱水时间增加而增加;试样破坏能耗密度随着饱水时间增长逐渐减小,动态强度降低,呈现饱水对煤样强度有弱化效应;相同能耗密度条件下,自然状态煤样的平均粒度大于饱水3,7 d,能耗密度与破碎粒度呈负相关,二者具有良好线性关系;饱水3和7 d煤样的能耗密度与破碎粒度拟合曲线明显偏低,表现含水对煤样破碎粒径影响显著;煤样破碎分形维数为1.67~2.25,自然状态煤样平均分形维数小于饱水3,7 d,煤样的分维数随着能耗密度的增加而提高,试样能耗密度与分形维数增幅均呈正相关,二者具有良好线性关系。  相似文献   

6.
为揭示水和加载率对岩石力学性质的共同作用效应,利用分离式霍普金森压杆试验系统对干燥和饱水砂岩进行一系列动态压缩、劈裂及断裂试验。试验结果表明,在静态加载条件下,岩石饱水后其强度和断裂韧度均会发生不同程度的降低;在动态加载条件下,岩石的强度和断裂韧度随着加载率的增加而升高,且相较于干燥试样,饱和岩石表现出更高的率相关性。在较高加载率下,岩石内部的自由水可产生惯性效应、弯液面效应以及黏性作用,阻碍裂纹的产生和扩张。特别地,当加载率超过1 290 GPa/s后,饱和试样的压缩强度甚至可以超过干燥试样。  相似文献   

7.
为研究层理面倾角对层状岩体动态拉压力学特性的影响,加工制备含5组不同层理面倾角的层状砂岩试样,在50 mm杆径分离式霍普金森压杆(SHPB)试验平台上进行冲击压缩和冲击劈裂拉伸试验,利用高速摄像仪实时记录试样动态裂纹扩展及破坏过程,分析层理面倾角θ或β对层状砂岩动态应力–应变、动态抗压和抗拉强度、破坏模式及能量吸收特性的影响规律。该层状砂岩层理面之间的差异主要来源于层间矿物组成成分含量的不同。研究表明:(1)冲击压缩载荷作用下,层状砂岩主要表现为5种典型破坏模式,随倾角θ增大,层状砂岩动态抗压强度呈倒U型变化;(2)冲击拉伸载荷作用下,巴西劈裂试样均表现为沿加载方向的劈裂拉伸破坏,随倾角β增大,层状砂岩动态抗拉强度增大。层状砂岩的能量吸收率随层理面倾角的不同而不同,选择与层理面合适的加载角(如θ=90°或β=0°),可以有效提高岩石破岩的能量利用率。  相似文献   

8.
为研究层理面倾角对层状岩体动态拉压力学特性的影响,加工制备含5组不同层理面倾角的层状砂岩试样,在50 mm杆径分离式霍普金森压杆(SHPB)试验平台上进行冲击压缩和冲击劈裂拉伸试验,利用高速摄像仪实时记录试样动态裂纹扩展及破坏过程,分析层理面倾角θ或β对层状砂岩动态应力–应变、动态抗压和抗拉强度、破坏模式及能量吸收特性的影响规律。该层状砂岩层理面之间的差异主要来源于层间矿物组成成分含量的不同。研究表明:(1)冲击压缩载荷作用下,层状砂岩主要表现为5种典型破坏模式,随倾角θ增大,层状砂岩动态抗压强度呈倒U型变化;(2)冲击拉伸载荷作用下,巴西劈裂试样均表现为沿加载方向的劈裂拉伸破坏,随倾角β增大,层状砂岩动态抗拉强度增大。层状砂岩的能量吸收率随层理面倾角的不同而不同,选择与层理面合适的加载角(如θ=90°或β=0°),可以有效提高岩石破岩的能量利用率。  相似文献   

9.
结构面对板岩力学特性影响研究   总被引:3,自引:3,他引:3  
运用单弱面理论研究含单组结构面的板岩岩体抗压强度随结构面方位的变化情况,建立了相应的一维、三维抗压强度的变化规律。将该规律运用到南水北调西线的板岩试验结果分析中,研究结果表明:(1)运用单弱面理论建立的强度变化规律较好地吻合了单轴、三轴试验结果,可以认为正确反映了板岩的强度变化规律;(2)当结构面倾角在51.7°左右时,板岩的抗压强度取得最小值;并以此为对称中心,倾角向大小两个方向变化时,抗压强度逐渐增大,到一定角度后将变为岩块的强度;(3)板岩的破坏形式随结构面的变化而不同,可以产生沿结构面滑移、剪切破坏及复合破坏3种类型的破坏形式;(4)围压的增大会使得板岩的破坏方式由复合破坏向剪切破坏转变,结构面的密度对岩体的强度影响不大。  相似文献   

10.
《四川建材》2019,(12):92-95
为研究水对岩石在动静组合荷载下拉伸强度和变形性质的影响,利用霍普金森压杆(SHPB)试验系统对自然和饱水状态砂岩开展了一系列动静组合加载平台巴西圆盘劈裂试验,同时采用数字图像相关技术(DIC)对试样的变形破坏进行监测。试验结果表明:饱水处理会降低岩石的静态拉伸强度及动静组合加载下的拉伸强度;动静组合加载下,自然和饱水岩石的拉伸强度均呈现出率效应,其率敏感性与岩石含水状态有关,饱水岩石的率敏感性显著高于自然状态岩石;随着加载率的增大,饱水岩石中的Stefan效应逐渐增强,孔隙水产生的抗力阻碍了裂纹的发育扩展,饱和岩石从而表现出动态弹性模量增强的力学行为。  相似文献   

11.
地下岩体结构经常遭受到地震、爆炸、冲击振动等产生的动力扰动,利用3D打印技术的优势研究冲击荷载下岩体动态力学性能对实现3D打印技术在工程领域的应用具有重要意义。采用φ50 mm的变截面霍普金森压杆(SHPB)装置,对含预制裂隙的3D打印岩体试样进行动态单轴压缩试验。研究结果表明:试样的动态抗压强度随着预制裂隙倾角的增大呈现出先减小后增大的趋势,当预制裂隙倾角为30°时试样强度最小,当预制裂隙倾角为90°时试样强度最大。与3D打印岩体试样的静态单轴压缩强度对比发现,3D打印砂性材料具有明显的率效应,当应变率为139.65 s-1时,3D打印岩体试样的动态抗压强度是静态抗压强度的4.34倍。预制裂隙缺陷在一定程度上加剧了试样的能量耗散和破碎过程,并且30°倾角预制裂隙对试样能量耗散和破碎结果的影响程度最大。同时,3D打印岩体试样的能量耗散过程与破碎块度表现出明显的自相关性,所用的3D打印砂性材料的宏观破碎结果与能量耗散之间的关系与天然岩石材料有一定相似性,为今后3D打印材料模拟天然岩体应用于动态力学试验的可行性奠定了基础。  相似文献   

12.
天然岩体中裂隙主要以交叉形态分布,为了探究交叉型裂隙对岩石力学特征及破坏过程中能量变化规律,预制正交型交叉裂隙,借助GAW-2000刚性试验压力机对单轴加载条件下岩石强度与能量演化规律进行计算与分析,研究结果表明:由于预制裂隙造成了初始损伤,含正交型裂隙岩石的储能能力均明显弱于完整岩石;岩石储能能力受裂隙分布形态影响并与岩石峰值强度保持良好的一致性。当主裂隙倾角为30°和60°时,岩石强度较高,分别为133.56 MPa和129.87 MPa,主裂隙为90°时,岩石试样的储能能力与峰值强度均最低。当岩石耗散能比例增加时,宏观裂隙大量产生,且耗散能占比开始增加的时间点不会晚于岩石峰值强度出现,耗散能占比的转折点可以作为岩石破坏的前兆性指标。  相似文献   

13.
由于岩石材料动态破坏的复杂性,理论分析和实验研究都还很不充分,岩石的动力特性越来越受到重视。本文采用霍普金森压杆对花岗岩圆柱试样进行了动态压缩试验,建立了加载速率与花岗岩冲击破坏时的弹性应变能、结构破坏能及岩石破坏形态之间的关系。试验结果表明:甘肃地区弹模在17~21 GPa的花岗岩在瞬时加载条件下,强度随着加载速率的增加而提高;动态压缩强度平均强度为240 MPa,动态模量为31.5 GPa;应变率的变化范围在81~210 s-1,动态压缩强度随着应变率的增加有明显增大的趋势;当冲击速度增加时,岩石破坏后释放的能量显著增长,应变率越大,岩石破碎块越小。该试验结果能够评价动态荷载作用下花岗岩的强度参数,为类似区域的工程设计与施工提供依据。  相似文献   

14.
为了研究含水率对层状岩体劈裂抗拉强度的影响,特选取层理显著的砂岩为研究对象,考虑5种含水率,进行顺层理弱面的劈裂抗拉强度试验,结合岩样劈裂破坏面的微观形貌特征和能量参数变化规律进行综合分析。研究结果表明:(1)随着含水率的增加,层状砂岩的抗拉强度逐渐减小,总体呈现先陡后缓的降低趋势,在饱水度低于80%左右时,抗拉强度降低幅度明显较大,而后抗拉强度降低趋势逐渐趋于缓慢;(2)岩样劈裂破坏面的高度参数和纹理参数都随着饱水度的增加而逐渐增大,呈先陡后缓的增长趋势,岩样抗拉强度与劈裂面微观形貌参数存在较好的线性相关性;(3)随着含水率的增加,加载过程中岩样吸收的总能量、弹性应变能逐渐减小,呈现与抗拉强度类似变化趋势,弹性应变能占总能量的比值逐渐减小,耗散能占总能量的比值逐渐增大;(4)层理弱面既是层状岩体结构的薄弱面,也是水分吸收和运移的主要空间和通道,含水率增加,首先是影响岩样层理弱面力学性状和孔隙水的分布,改变岩样加载过程中的裂纹扩展规律,进而影响加载过程中的弹性应变能和耗散能的分配比例,从而导致岩样劈裂破坏面形态趋于复杂,抗拉强度降低,水对岩样抗拉强度的影响是一个从微观结构变化导致宏观力学特性劣化的过程。  相似文献   

15.
含片理板岩在物理力学特性方面表现出明显的各向异性。综合考虑片理角度(?)和加载方向(θ)两个影响因素开展板岩巴西劈裂试验,对片理面的三维结构效应进行深入研究。结果表明:(1)片理面三维结构效应对板岩力学强度和破坏特征有显著影响,不同片理角度条件下巴西劈裂强度随加载方向的变化趋势有明显差异。(2)在片理角度较小或较大的情况下,即0°≤?≤15°或75°≤?≤90°,破坏面的三维空间效应不明显,圆盘正反两面的宏观裂纹具有一定的相似性;当?和θ均位于[30°,60°]内,2种因素的耦合作用使破坏面呈现三维空间分布的特点,圆盘正反两面的宏观裂纹呈现近似反对称的位置关系。(3)板岩在巴西劈裂试验中的储能能力与片理角度呈负相关关系,与巴西劈裂强度呈正相关关系。(4)片理角度对巴西劈裂强度的影响更显著,加载方向对破坏形式的影响更显著。随片理角度增加,巴西劈裂强度和能量的各向异性比均呈现增大的趋势,即各向异性越来越明显。研究成果可为横观各向同性岩石张拉力学特性分析提供参考和试验依据。  相似文献   

16.
隧道、硐室和矿井等地下空间,应力卸荷是导致岩体破坏的主要原因之一。因此,为研究卸荷条件下的岩石破坏行为,以页岩为研究对象,开展恒定轴压卸围压三轴压缩试验。基于能量耗散与释放原理,分析试验不同阶段能量演化规律及临界围压对试样吸收的总能量和耗散能的影响,探讨卸荷条件下岩石破坏条件。研究结果表明,卸荷试验能量变化主要分为能量聚集阶段、能量耗散阶段和能量释放3个阶段:(1)外力对试样做的功主要以弹性能形式存在;(2)外力所做的功主要耗散于微裂纹形成、扩展,岩石强度降低,此阶段耗散能迅速增加而弹性能基本保持不变;(3)当岩石强度降低到一定程度时,弹性能瞬间释放,岩石破坏。  相似文献   

17.
不同含水率红砂岩静动态劈拉试验及细观分析   总被引:1,自引:0,他引:1       下载免费PDF全文
研究水-岩耦合作用下岩石力学特性及细观结构,对减少由地下水造成的深部岩体工程病害具有重要意义。采用直径为100 mm的分离式霍普金森压杆(SHPB)装置与电液伺服压力试验机,进行不同含水率下砂岩试件的动静态劈裂抗拉试验,而后对试件破坏断口进行电镜扫描观察,分析断口形貌特征,依靠SEM图像数字处理技术,进一步得出红砂岩拉伸破坏规律。试验结果表明:红砂岩的劈拉强度随含水率的增加而降低,有明显的遇水软化现象;相比于静态抗拉强度,动态抗拉强度大幅提升,且有显著的应变率强化效应;随着含水率的提高,砂岩试件拉伸破坏时,碎块数量逐渐增多,尺度逐渐减小;饱水岩样的动态劈裂拉伸破坏相比于干燥岩样表现出一定的塑性特征。对断口微裂隙的面积等信息进行定量化处理,分析动态劈拉破坏中的水-应变率效应,得出水在不同应变率下砂岩试样的动态劈拉破坏裂纹扩展中具有均衡作用;微裂隙数量与面积随应变率的提高有增加趋势,破坏断口细观形貌特征存在应变率相关性。  相似文献   

18.
为探讨含水煤样动静组合加载下的力学特征,利用改进split Hopkinson pressure bar(SHPB)和RMT–150试验系统对自然和饱水7 d煤样进行了三维动静组合加载、三维静载对比试验。结果表明:三维静载试验中,自然煤样峰值强度变化幅度为10.49%,饱水7 d煤样峰值强度变化幅度为59.98%,饱水强度软化系数为0.81;三维动静组合加载试验中,轴压强度低于单轴静载煤样强度的55%时,饱水7 d煤样的动态强度高于自然煤样动态强度,饱水7 d煤样比自然煤样动态强度分别提高了7.85%~18.44%(围压4 MPa)和8.71%~19.84%(围压8 MPa);不同围压相同轴压试验中,自然和饱水7 d煤样的动态强度随着围压增大均呈增大趋势,饱水7 d煤样动态强度增加幅度比自然煤样动态强度增加幅度大,表明饱水煤样对围压变化的响应较强。揭示饱水对煤样的强度影响较显著,但应变率起到控制作用,中或高应变率条件下裂隙水与裂隙耦合形成较大刚度,三维动静组合加载饱水煤样动态强度呈增高特征。  相似文献   

19.
饱水砂岩动态强度的SHPB试验研究   总被引:2,自引:1,他引:1  
采用改进的φ75mm杆径SHPB试验装置,对长径比为0.5的开阳磷矿砂岩进行自然风干和饱水状态下的冲击压缩试验,对比INSTRON材料试验机的静载试验结果表明:冲击载荷作用下饱水砂岩的应力–应变关系不同于其静态应力–应变关系,中应变率加载条件下饱水砂岩动态强度与风干砂岩的动态强度相近,这与静载条件下饱水砂岩强度降低的结果相反;风干砂岩动态屈服应力与其静态相近,饱水砂岩动态屈服应力比其静态下的结果提高近2倍,表现出比自然风干砂岩更强的应变率敏感性;水对砂岩动态破坏效果有影响,自然风干砂岩比饱水砂岩受冲击破坏更为严重;冲击载荷作用下,饱水砂岩动态强度应考虑其自由水黏度及Stefan效应的影响。  相似文献   

20.
高应变率下预制单节理岩石SHPB劈裂试验能量耗散分析   总被引:1,自引:0,他引:1  
李淼  乔兰  李庆文 《岩土工程学报》2017,39(7):1336-1343
应用SHPB试验装置研究预制单节理岩石的能量耗散关系。使用SHPB试验系统,对高径比为0.5的完整花岗岩试样及预制单节理花岗岩试样进行高应变率下的冲击劈裂试验。在相同驱动气压下,改变加载方向与节理间的夹角,完成高应变率相同入射能下的冲击劈裂试验。对SHPB系统中的入射能、反射能、透射能及试样吸收能的时程变化规律进行了分析;从能量角度出发,分析冲击荷载作用下单节理岩石的能量耗散规律及其各向异性特征。结果表明:高应变率下,完整花岗岩试样在冲击劈裂试验中的吸收能随平均应变率增加而增加,表现出显著的应变率相关性;预制单节理岩石与加载方向之间夹角对破坏模式的影响明显,节理试样产生3种破坏模式:(1)穿越节理面的劈裂破坏;(2)沿节理岩石层面的滑移破坏;(3)劈裂与滑移破坏共同作用下的破坏。在入射能基本相同,入射时间较长时节理岩石试样吸收能较入射时间较短时的吸收能大。动态劈裂试验中,节理试样的吸收能随节理角度变化(0°~90°)近似呈U型。研究成果可为节理岩石动态力学性能研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号