首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The enzymes 7,8-dihydroxymethylpterin-pyrophosphokinase (HPPK) and 7,8-dihydropteroate synthase (DHPS), which act sequentially in the folate pathway, were purified to homogeneity from crude extracts of Escherichia coli MC4100. The enzymes represent less than 0.01% of the total soluble protein. HPPK was purified greater than 10,000-fold; the native enzyme appears to be a monomer with a molecular mass of 25 kDa and a pI of 5.2. DHPS was purified greater than 7,000-fold; the native enzyme has an apparent molecular mass of 52 to 54 kDa and is composed of two identical 30-kDa subunits. The amino-terminal sequences for both enzymes have been determined.  相似文献   

2.
3.
The Escherichia coli structural gene for alkaline phosphatase, phoA, and a promoter-like mutant of phoA, called pho-1003(Bin) phoA+, were cloned by using plasmid vectors. Initially, these genes were cloned on deoxyribonucleic acid fragments of 28.9 kilobases (kb). Subsequently, they were subcloned on fragments and 4.8 and then 2.7 kilobases. A restriction map was developed, and phoA was localized to a 1.7-kb region. The promoter end of the gene was inferred by its proximity to another gene cloned on the same deoxyribonucleic acid fragment, proC. The stability of the largest plasmid (33.3 kb) was found to be recA dependent, although the subcloned plasmids were stable in a recA+ strain. Synthesis of alkaline phosphatase directed by the phoA+ and pho-1003(Bin) phoA+ plasmids in a phoA deletion strain was assayed under repressing and derepressing levels of phosphate. These data were compared with the copy numbers of the plasmids. It was found that synthesis of alkaline phosphatase was tightly regulated, even under derepressing conditions: a copy number of 17 enabled cells to synthesize only about twofold more enzyme than did cells with 1 chromosomal copy of phoA+. Enzyme levels were also compared for cells containing pho-1003(Bin) phoA+ and phoA+.  相似文献   

4.
The gene encoding L-rhamnose isomerase (L-RhI) from Pseudomonas stutzeri was cloned into Escherichia coli and sequenced. A sequence analysis of the DNA responsible for the L-RhI gene revealed an open reading frame of 1,290 bp coding for a protein of 430 amino acid residues with a predicted molecular mass of 46,946 Da. A comparison of the deduced amino acid sequence with sequences in relevant databases indicated that no significant homology has previously been identified. An amino acid sequence alignment, however, suggested that the residues involved in the active site of L-RhI from E. coli are conserved in that from P. stutzeri. The L-RhI gene was then overexpressed in E. coli cells under the control of the T5 promoter. The recombinant clone, E. coli JM109, produced significant levels of L-RhI activity, with a specific activity of 140 U/mg and a volumetric yield of 20,000 U of soluble enzyme per liter of medium. This reflected a 20-fold increase in the volumetric yield compared to the value for the intrinsic yield. The recombinant L-RhI protein was purified to apparent homogeneity on the basis of three-step chromatography. The purified recombinant enzyme showed a single band with an estimated molecular weight of 42,000 in a sodium dodecyl sulfate-polyacrylamide gel. The overall enzymatic properties of the purified recombinant L-RhI protein were the same as those of the authentic one, as the optimal activity was measured at 60 degrees C within a broad pH range from 5.0 to 11.0, with an optimum at pH 9.0.  相似文献   

5.
A lambda placMu1 insertion was made into araE, the gene for arabinose-proton symport in Escherichia coli. A phage containing an araE'-'lacZ fusion was recovered from the lysogen and its restriction map compared with that of the 61-min region of the E. coli genome to establish the gene order thyA araE orf lysR lysA galR; araE was transcribed toward orf. A 4.8-kilobase SalI-EcoRI DNA fragment containing araE was subcloned from the phage lambda d(lysA+ galR+ araE+) into the plasmid vector pBR322. From this plasmid a 2.8-kilobase HincII-PvuII DNA fragment including araE was sequenced and also subcloned into the expression vector pAD284. The araE gene was 1416-base pairs long, encoding a hydrophobic protein of 472 amino acids with a calculated Mr of 51,683. The amino acid sequence was homologous with the xylose-proton symporter of E. coli and the glucose transporters from a human hepatoma HepG2 cell line, human erythrocytes, and rat brain. The overexpressed araE gene product was identified in Coomassie-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels of cell membranes as a protein of apparent Mr 35,000 +/- 1,150. Arabinose protected this protein against reaction with N-ethylmaleimide.  相似文献   

6.
A 6-kb fragment of DNA, which complemented defects in the alcohol dehydrogenase (ADH)-encoding gene (adhE) of Escherichia coli, was cloned into a multicopy vector. Both ADH and coenzyme-A-linked acetaldehyde dehydrogenase (ACDH) activities were encoded by the plasmid, pHIL8. The adhE gene was identified as an open reading frame of 891 codons encoding an Mr 96,008 protein (minus the initiating methionine). Codon usage analysis indicates that adhE should be highly expressed. This gene shows no significant homology to any previously sequenced ADH-encoding gene.  相似文献   

7.
8.
9.
DNA sequence of the gene coding for Escherichia coli ribonuclease H   总被引:23,自引:0,他引:23  
The gene for Escherichia coli ribonuclease H has been studied by use of a plasmid which contains a segment of the E. coli chromosome. The genomic DNA was subcloned from pLC28-22 to pBR322 by use of various restriction enzymes. Such subcloning limited the RNase H gene to a piece of DNA no longer than 760 base pairs. Cells bearing plasmids containing the RNase H gene produce as much as 10-15 times the normal amount of RNase H without any drastic effect on maintenance of the plasmid or cell growth. DNA sequence analysis has permitted the prediction of a protein whose molecular weight is 17,559 (155 amino acid residues). The predicted sequence was confirmed by amino acid analysis, NH2-terminal amino acid sequence, and size determination of highly purified RNase H.  相似文献   

10.
Melibiose uptake and hydrolysis in E.coli is performed by the MelB and MelA proteins, respectively. We report the cloning and sequencing of the melA gene. The nucleotide sequence data showed that melA codes for a 450 amino acid long protein with a molecular weight of 50.6 kd. The sequence data also supported the assumption that the mel locus forms an operon with melA in proximal position. A comparison of MelA with alpha-galactosidase proteins from yeast and human origin showed that these proteins have only limited homology, the yeast and human proteins being more related. However, regions common to all three proteins were found indicating sequences that might comprise the active site of alpha-galactosidase.  相似文献   

11.
12.
NAD(+)-dependent D-lactate dehydrogenase from Lactobacillus helveticus was purified to apparent homogeneity, and the sequence of the first 36 amino acid residues determined. Using forward and reverse oligonucleotide primers, based on the N-terminal sequence and amino acid residues 220-215 of the Lactobacillus bulgaricus enzyme [Kochhar, S., Hunziker, P. E., Leong-Morgenthaler, P. & Hottinger, H. (1992) J. Biol. Chem. 267, 8499-8513], a 0.6-kbp DNA fragment was amplified from L. helveticus genomic DNA by the polymerase chain reaction. This amplified DNA fragment was used as a probe to identify two recombinant clones containing the D-lactate dehydrogenase gene. Both plasmids overexpressed D-lactate dehydrogenase (greater than 60% total soluble cell protein) and were stable in Escherichia coli, compared to plasmids carrying the L. bulgaricus and Lactobacillus plantarum genes. The entire nucleotide sequence of the L. helveticus D-lactate dehydrogenase gene was determined. The deduced amino acid sequence indicated a polypeptide consisting of 336 amino acid residues, which showed significant amino acid sequence similarity to the recently identified family of D-2-hydroxy-acid dehydrogenases [Kochhar, S., Hunziker, P. E., Leong-Morgenthaler, P. & Hottinger, H. (1992) Biochem. Biophys. Res. Commun. 184, 60-66]. The physicochemical and catalytic properties of recombinant D-lactate dehydrogenase were identical to those of the wild-type enzyme, e.g. alpha 2 dimeric subunit structure, isoelectric pH, Km and Kcat for pyruvate and other 2-oxo-acid substrates. The kinetic profiles of 2-oxo-acid substrates showed some marked differences from that of L-lactate dehydrogenase, suggesting different mechanisms for substrate binding and specificity.  相似文献   

13.
14.
Plant chitinases are pathogenesis-related proteins, which are believed to be involved in plant defense responses to pathogen infection. In this study, chitinase gene from barley was cloned and overexpressed in Escherichia coli. Chitinase (35 kDa) was isolated and purified. Since the protein was produced as insoluble inclusion bodies, the protein was solubilized and refolded. Purified chitinase exerted broad-spectrum antifungal activity against Botrytis cinerea (blight of tobacco), Pestalotia theae (leaf spot of tea), Bipolaris oryzae (brown spot of rice), Alternaria sp. (grain discoloration of rice), Curvularia lunata (leaf spot of clover) and Rhizoctonia solani (sheath blight of rice). Due to the potential of broad-spectrum antifungal activity barley chitinase gene can be used to enhance fungal-resistance in crop plants such as rice, tobacco, tea and clover.  相似文献   

15.
16.
Carnitine dehydratase from Escherichia coli O44 K74 is an inducible enzyme detectable in cells grown anaerobically in the presence of L-(-)-carnitine or crotonobetaine. The purified enzyme catalyzes the dehydration of L-(-)-carnitine to crotonobetaine (H. Jung, K. Jung, and H.-P. Kleber, Biochim. Biophys. Acta 1003:270-276, 1989). The caiB gene, encoding carnitine dehydratase, was isolated by oligonucleotide screening from a genomic library of E. coli O44 K74. The caiB gene is 1,215 bp long, and it encodes a protein of 405 amino acids with a predicted M(r) of 45,074. The identity of the gene product was first assessed by its comigration in sodium dodecyl sulfate-polyacrylamide gels with the purified enzyme after overexpression in the pT7 system and by its enzymatic activity. Moreover, the N-terminal amino acid sequence of the purified protein was found to be identical to that predicted from the gene sequence. Northern (RNA) analysis showed that caiB is likely to be cotranscribed with at least one other gene. This other gene could be the gene encoding a 47-kDa protein, which was overexpressed upstream of caiB.  相似文献   

17.
A lambda recombinant phage expressing beta-mannanase activity in Escherichia coli has been isolated from a genomic library of the extremely thermophilic anaerobe "Caldocellum saccharolyticum." The gene was cloned into pBR322 on a 5-kb BamHI fragment, and its location was obtained by deletion analysis. The sequence of a 2.1-kb fragment containing the mannanase gene has been determined. One open reading frame was found which could code for a protein of Mr 38,904. The mannanase gene (manA) was overexpressed in E. coli by cloning the gene downstream from the lacZ promoter of pUC18. The enzyme was most active at pH 6 and 80 degrees C and degraded locust bean gum, guar gum, Pinus radiata glucomannan, and konjak glucomannan. The noncoding region downstream from the mannanase gene showed strong homology to celB, a gene coding for a cellulase from the same organism, suggesting that the manA gene might have been inserted into its present position on the "C. saccharolyticum" genome by homologous recombination.  相似文献   

18.
Cloning and sequence of the crp gene of Escherichia coli K 12.   总被引:35,自引:12,他引:35       下载免费PDF全文
We have determined the nucleotide sequence of the crp gene of Escherichia coli K 12. From a lambda transducing phage, the crp region was subcloned into pBR322. The gene was localized on the cloned fragment by determining the length of deletions which affect its expression. Its nucleotide sequence was established by using the technique of Maxam and Gilbert. The deduced amino-acid sequence is in agreement with the previously published amino acid composition of the protein (1, 2). Analysis of the sequence confirms that the DNA binding domain is located in the C-terminal portion of the protein.  相似文献   

19.
An early event in malignant transformation is the increased expression of proteases, such as plasminogen activator, which can degrade surrounding extracellular matrices, thereby conferring an advantage for tumour cell invasion and metastasis. The present studies provide evidence that plasma fibronectin (Fn), which is a component of the extracellular matrix, is a direct substrate for the plasminogen activator urokinase (UK). Human plasma Fn was incubated with human UK under plasminogen-free conditions. Fn cleavage was both time- and dose-dependent and was evident within 30 min. The proteolytic digestion was limited and complete within 12 h at an enzyme/substrate ratio of 1:20. Analysis of the final proteolytic digestion products demonstrated the disappearance of the native dimeric 440 kDa structure of Fn with the concomitant appearance of three proteolytic fragments of 210, 200 and 25 kDa. Since two large fragments of similar size to the 220 kDa monomeric chains of Fn were obtained following proteolysis, it is proposed that UK cleaves Fn at two sites, one towards the N-terminal and one close to the C-terminal, but N-terminal to its interchain disulphide bonds. These studies suggest that the local proteolytic digestion and release of Fn from the extracellular matrix by tumour cells possessing high levels of UK may involve the direct proteolytic breakdown of Fn by UK.  相似文献   

20.
RNase D is a 3'-exoribonuclease whose in vitro specificity has suggested that it is involved in the processing of tRNA precursors. Its in vivo role has remained unclear, however, because mutant cells devoid of the enzyme display no defect in growth or tRNA processing. To learn more about the structure and function of RNase D, we cloned the Escherichia coli rnd gene, which is thought to code for this enzyme. The rnd gene was isolated from a cosmid library based on elevated RNase D activity and was subcloned as a 1.4-kilobase-pair fragment in pUC18. Maxicell analysis of the cloned fragment revealed that a single protein of approximately 40 kilodaltons, which is the size of RNase D, was synthesized. The rnd gene is present as a single copy on the E. coli chromosome and is totally absent in a deletion mutant. Cells that harbored the cloned rnd gene displayed RNase D activity that was elevated as much as 20-fold over that of the wild type. As growth of the culture progressed, however, RNase D specific activity declined dramatically, together with a similar decrease in plasmid copy number. In contrast, no decrease in copy number was observed with an inactive rnd gene. Placement of the rnd gene downstream from the lac promoter led to inducible RNase D overexpression and concomitantly slowed cell growth. These findings support the idea that rnd is the structural gene for RNase D and indicate that elevated RNase D activity is deleterious to E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号