共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Thermal Engineering》2014,62(2):500-506
Absorption heat transformer (AHT) and flash evaporator (FE) are used to reduce the heat consumption of CO2 capture processes and an AHT–FE-aided capture system is proposed. Analyses are carried out to verify the effectiveness in reducing heat consumption. Compared with the base CO2 capture system of 3000 t/d CO2 capture capacity from a 660 MW coal-fired power unit, the AHT–FE-aided capture system reduces the heat consumption from 3.873 GJ/tCO2 to 3.772 GJ/tCO2, and the corresponding energy saving is 2.62%. The economic analysis shows that the annual profit would be 2.94 million RMB Yuan. The payback period of the AHT–FE-aided capture system is approximately 2.4 years. Therefore, the AHT–FE-aided capture system is both economically and technically feasible for improving the CO2 capture energy performance. 相似文献
2.
《International Journal of Hydrogen Energy》2023,48(50):18947-18977
Artificial Neural Networks (ANN) have been widely used by scientists in a variety of energy modes (biomass, wind, solar, geothermal, and hydroelectric). This review highlights the assistance of ANN for researchers in the quest for discovering more advanced materials/processes for efficient hydrogen production (HP). The review is divided into two parts in this context. The first section briefly mentions, in terms of technologies, economy, energy consumption, and costs symmetrically outlined the advantages and disadvantages of various HP routes such as fossil fuel/biomass conversion, water electrolysis, microbial fermentation, and photocatalysis. Subsequently, ANN and ANN hybrid studies implemented in HP research were evaluated. Finally, statistics of hybrid studies with ANN are given, and future research proposals and hot research topics are briefly discussed. This research, which touches upon the types of ANNs applied to HP methods and their comparison with other modeling techniques, has an essential place in its field. 相似文献
3.
《International Journal of Hydrogen Energy》2021,46(65):32871-32881
Photocatalysts can be used both for air cleaning and solar energy harvesting through water splitting. However, pure TiO2 photocatalysts are often inefficient and therefore co-catalysts are needed to improve the yield. To achieve this goal, we prepared TiO2 and deposited Pt, Ir and Ru co-catalysts on its surface. Two base TiO2 nanoparticles were used: P25 and rutile TiO2 synthesized via hydrothermal method. Co-catalysts were deposited by wet impregnation technique using single element and a combination of two elements (Pt and Ir or Pt and Ru), followed by annealing in either air or H2/Ar. Annealing in reducing atmosphere increased the photocatalytic activity of oxidation of isopropanol compared to annealing in air. We demonstrated a clear influence of the co-catalysts on the photocatalytic degradation of isopropanol and on electrochemical water-splitting reaction. The platinum-containing samples showed the best HER activity. 相似文献
4.
《International Journal of Hydrogen Energy》2020,45(11):6231-6242
The biological production of hydrogen by microalgae is considered as an advantageous process. However, its yields are sometimes limited. To go beyond this limit, the improvement of the H2 generation rate by Spirulina was studied via an electrochemical photo-bioreactor (EPBR). This EPBR led to hydrogen evolution rates of up to 27.49 and 13.37 mol of H2.d−1.m−3 for the anode and cathode chambers, respectively, under 0.3 V voltage and ~2.5 mA current. These results represent about a 4-fold increase compared to the H2 production rate recorded without the application of a voltage. This increase in bio-hydrogen production is correlated with a drop in the concentration of NADPH. The Electrochemical Sequential Batch Reactor (ESRB) provided a more interesting total production rate which was 2.65 m3 m−3 d−1, compared to the batch mode, which gave 1.2 m3 m−3.d−1. The results show, for the first time, the boosting effect of the voltage on the metabolism of H2 production by the Spirulina strain. 相似文献
5.
《International Journal of Hydrogen Energy》2020,45(41):21611-21624
Although utilization of diverse classes of metal oxides as hydrogen storage materials has been reported, but there is still a major need to introduce efficient materials. Herein, mesoporous Zn2V2O7 nanostructures were produced by a new sonochemical method using hydrazine, zinc nitrate, and ammonium vanadate as the starting reagents and then annealed at 700 °C. Prior to annealing, Zn3V3O8 was produced in the presence of ultrasonic waves, whereas in the absence of ultrasonic waves, Zn2(VO4)2 was the major product. In fact, ultrasonic waves interfered with the reaction mechanism and reduced V5+ to V4+ and V3+. Because of the proper composition and structure of these nanostructures, they were used for electrochemical storage of hydrogen. Storage of over 2899 mAh/g after 20 cycles by flower-like nanostructures revealed their high capability. The results also showed that morphology affects efficiency such that three-dimensional spherical nanostructures had a storage capacity of 2247 mAh/g after 20 cycles. 相似文献
6.
《International Journal of Hydrogen Energy》2020,45(38):19642-19663
In spite of significant achievements in alkaline exchange membrane fuel cells (AEMFCs) in recent years, they are still lagging behind proton exchange membrane fuel cells (PEMFCs) due to performance instability. Among the relevant operational parameters of AEMFC, the researchers have found that poor water management within the cell was the main reason for failure of the system. In the past five years, numerous modeling and experimental works were reported proposing different strategies to improve water management of AEMFC. With proper water management, the achievable power output in AEMFCs is comparable with that of PEMFCs or even more. Efforts have to be continued, but AEMFCs can become a strong competitor in the market place. This review paper discusses the strategies and developments impacting water management of AEMFCs providing knowledge source for upcoming studies. 相似文献
7.
《International Journal of Hydrogen Energy》2019,44(12):5661-5675
Heavy fossil fuels consumption has raised concerns over the energy security and climate change while hydrogen is regarded as the fuel of future to decarbonize global energy use. Hydrogen is commonly used as feedstocks in chemical industries and has a wide range of energy applications such as vehicle fuel, boiler fuel, and energy storage. However, the development of hydrogen energy in Malaysia is sluggish despite the predefined targets in hydrogen roadmap. This paper aims to study the future directions of hydrogen economy in Malaysia considering a variety of hydrogen applications. The potential approaches for hydrogen production, storage, distribution and application in Malaysia have been reviewed and the challenges of hydrogen economy are discussed. A conceptual framework for the accomplishment of hydrogen economy has been proposed where renewable hydrogen could penetrate Malaysia market in three phases. In the first phase, the market should aim to utilize the hydrogen as feedstock for chemical industries. Once the hydrogen production side is matured in the second phase, hydrogen should be used as fuel in internal combustion engines or burners. In the final phase hydrogen should be used as fuel for automobiles (using fuel cell), fuel-cell combined heat and power (CHP) and as energy storage. 相似文献
8.
《International Journal of Hydrogen Energy》2022,47(84):35541-35552
This paper evaluates the potential of grid services in France, Italy, Norway and Spain to provide an alternative income for electrolysers producing hydrogen from wind power. Grid services are simulated with each country's data for 2017 for energy prices, grid services and wind power profiles from relevant wind parks. A novel metric is presented, the value of curtailed hydrogen, which is independent from several highly uncertain parameters such as electrolyser cost or hydrogen market price. Results indicate that grid services can monetise the unused spare capacity of electrolyser plants, improving their economy in the critical deployment phase. For most countries, up-regulation yields a value of curtailed hydrogen above 6 €/kg, over 3 times higher than the EU's 2030 price target (without incentives). However, countries with large hydro power resources such as Norway yield far lower results, below 2 €/kg. The value of curtailed hydrogen also decreases with hydrogen production, corresponding to the cases of symmetric and down-regulation. 相似文献
9.
The utilization of different chemical constituents of corn silage during industrial-scale anaerobic digestion was determined. Corn silage together with the resulting solid digestate generated during biogas production were collected from an industrial plant during a regular operating period. Moisture, water and ethanol extractives, ash, total nitrogen, starch, cellulose, the monomeric composition of hemicellulose, acid soluble and acid insoluble lignin were measured in both corn silage and corn silage solid digestate. The relative consumption of each component of corn silage during its anaerobic digestion was estimated with reference to acid insoluble lignin. It was assumed that lignin was not digested throughout the process. Starch and large fractions of extractives and acid soluble lignin were digested. In contrast, the digestion of cellulose and particularly hemicellulose were limited (40% and 29% respectively). Of the hemicellulose monomers, xylose was the least digested (20%). The present work shows that the digestate produced by commercial corn-silage anaerobic digestion contains a notable quantity of cell wall polymers. These could potentially be used in biorefinery processes, e.g. ethanol and xylo-oligosaccharide production. 相似文献
10.
《International Journal of Hydrogen Energy》2019,44(12):5799-5811
Hydrogen is a promising alternative to fossil fuel for a source of clean energy due to its high energy content. Some strains of phototrophic microorganisms are known as important object of scientific research and they are being explored to raise biohydrogen (BioH2) yield. BioH2 is still not commonly used in industrial area because of the low biomass yield and valuable down streaming process. This article deals with the methods of the hydrogen production with the help of two large groups of phototrophic microorganisms – microalgae and cyanobacteria. Microalgal hydrogen is environmentally friendly alternative to conventional fossil fuels. Algal biomass has been considered as an attractive raw source for hydrogen production. Genetic modified strains of cyanobacteria are used as a perspective object for obtaining hydrogen. The modern photobioreactors and outdoor air systems have been used to obtain the biomass used for hydrogen production. At present time a variety of immobilization matrices and methods are being examined for their suitability to make immobilized H2 producers. 相似文献
11.
《International Journal of Hydrogen Energy》2019,44(32):17278-17296
Leachate generated in landfills is considered as a hazardous waste stream due to its composition and needs adequate treatment for environmental protection purposes. Nonetheless, a contemporary technology should not only be able to deal with its degradation, but at the same time, recover energy in various forms. Such valorization approaches with priority on these dual-aims are potentially those that rely on anaerobic biosystems. In the literature, processes considered on that matter include fermentative, digestive and bioelectrochemical set-ups to deliver energy-carriers such as biohydrogen (DF), biogas (AD) and electricity (BES), respectively. Moreover, to enhance the global efficiency of leachate utilization, it has been recently trending to develop integrated options by combining these systems (DF, AD, BES) into a cascade scheme. In this review, it is intended to give an insight to the research activities realized in these fields and show possible directions towards the better exploitation of leachate feedstock under anaerobic conditions. 相似文献
12.
《International Journal of Hydrogen Energy》2019,44(16):7996-8010
This paper proposes an efficient hybrid technique for the system modeling and the optimal energy management of the MG with low cost. The novelty of the proposed approach is the combination of the ANFIS and MDA named as ANFMDA that performs the decision making with the multi-objective problem. Moreover, the proposed method is the cost-effective power production of the microgrids and effective utilization of renewable energy sources without wasting the available energy. The strategy is worried about the mathematical optimization problems that include in excess of one objective function to be optimized at the same time. The MDA algorithm optimizes the MG configuration at minimum fuel cost to take care of the required load demand by using the inputs of MG like WT, PV array, MT, and ESS with corresponding cost functions. In the proposed approach, the ANFIS learning phase is employed to predict the load demand. Based on the predicted load demand the minimum annual fuel cost characteristics, the operation cost and also the replacement cost is decreased with all the subsequent points of the MDA. The performance of the proposed method is examined by comparison with the other techniques such as ABC algorithm, DA, and HOMER. The comparison results demonstrate the superiority of the proposed technique and confirm its potential to solve the problem. 相似文献
13.
《International Journal of Hydrogen Energy》2022,47(10):6965-6973
This study aims to find the evidence that polyethylene terephthalate (PET) is pertinent, with respect to the risk of thermal degradation during fueling, as a liner material of a type-4 composite cylinder for storing 6.8 L of compressed hydrogen. In particular, one type-4 cylinder with the PET liner of thickness 0.6 mm and one type-3 cylinder for comparison have simultaneously undergone 6 cycles of fast fueling (0.15 MPa/s) and fast defueling (0.55 MPa/s) with hydrogen gas in the range of 2 to 45 MPa. The hydrogen temperatures in cylinders, which were measured by a specially-devised thermocouple inserted in each cylinder, change within the range of ?30.0 to 70.0 °C. Although the temperature in the type-4 cylinder rises higher than that in the type-3 cylinder due to the lower heat conductivity of PET, it does not exceed 85 °C, which is the limit set by the international standards, EC No. 79. Furthermore, from the measurements of the deformation by the laser displacement sensors, the type-4 cylinder swells less than the type-3 cylinder. The pressure-displacement analysis shows that the deformation of type-4 cylinders occurs reversibly, i.e., defueling makes the cylinder regain its previous shape. In essence, PET is safe against thermal degradation when applied as a liner of a 6.8 L type-4 cylinder for hydrogen storage. 相似文献
14.
《International Journal of Hydrogen Energy》2021,46(71):35121-35129
Supercritical water is a promising medium to convert plastics into hydrogen and other recyclable products efficiently. In previous research, supercritical water gasification characteristics investigations focus on thermoplastics instead of thermoset plastics due to its chemical, thermal and mechanical stability. Urea-formaldehyde (UF) plastics were selected as a typical kind of thermoset plastics for investigation in this paper and quartz tubes were used as the reactor in order to avoid the potential catalytic effect of metal reactor wall. Conversion characteristic were studied and the influence of different operating parameters such as temperature, reaction time, feedstock mass fraction and pressure were investigated respectively. The molar fraction of hydrogen could reach about 70% in 700 °C. Products in gas phase and solid phase were analyzed, and properties, chemical structures and inhibition mechanism of thermoset plastics was analyzed after comparing with polystyrene (PS) plastics. The result showed that increase of high temperature and long reaction time could promote gasification process, meanwhile the increase in the feedstock mass fraction would result in suppression of the gasification process. Finally, kinetic study of UF was carried out and the activation energy and pre-exponential factor of the Arrhenius equation were calculated as 30.09 ± 1.62 kJ/mol and 0.1199 ± 0.0049 min−1, respectively. 相似文献
15.
《International Journal of Hydrogen Energy》2019,44(5):2426-2434
We propose targets, based on real world data, necessary to design a financially viable microbial electrolysis cell (MEC) for the treatment of domestic wastewater. By reducing the cost of the anode and current collecting materials by 90%, a viable organic loading rate would be between 800 and 1,400g-COD/m3/d (2–3A/m2). The anode and current collector materials account for 94% of the total material costs; consequently, cost savings in any other material are moot. If the bioanode can be reused after 20 years, further, significant savings could be achieved. To develop targets we used real world data, for the first time, to evaluate the financial viability of MECs against the current predominant method of wastewater treatment: activated sludge. We modelled net present values for eight potential scenarios and the performances required for MECs to break-even. 相似文献
16.
《International Journal of Hydrogen Energy》2022,47(59):25066-25079
The influence of hydrogen level on compressive properties of TC21 alloy processed by thermohydrogen treatment (THT) at 1123 K was studied through room-temperature compression experiments. The microstructures of TC21 alloy processed by THT at 1123 K were investigated by OM, XRD, and TEM. Results showed that hydrogen level affected apparently the microstructures and compressive properties of TC21 alloy processed by THT at 1123 K. With increasing level of hydrogen, the yield strength of TC21 alloy decreased to a minimum initially and then increased; the deformation limit of TC21 alloy decreased slightly to a minimum first, then increased to a maximum, and ultimately decreased. At a hydrogen level of 0.78 wt%, the deformation limit of TC21 alloy was the highest among all THT-processed TC21 alloys and showed an increase of 244.33% compared with the original TC21 alloy. 相似文献
17.
《International Journal of Hydrogen Energy》2019,44(16):8051-8061
Marble processing leads to the production of high amount of waste marble powder (WMP) as a byproduct, which can be a potential health risk and has hazardous impacts on the surrounding environment. However, marble is composed of calcite making it suitable for the calcium-based catalyst. Moreover, no study has been carried out to utilize this WMP in municipal solid waste (MSW) gasification process. Therefore, there is a need to address its utilization as a potential catalyst/sorbent in the gasification of municipal solid waste (MSW). A laboratory scale batch-type fixed bed reactor was used to study the effect of WMP addition on the CO2 adsorption, steam reforming capability and char gasification in the presence of steam. Produced gas composition, gas yield, carbon conversion efficiency and tar yield were examined at different WMP to MSW ratios. Effect of temperature and steam rate varying from 700 to 900 °C and 2.5–10 ml/min respectively were also considered in this study. WMP showed a good capacity towards hydrogen enriched syngas production as well as CO2 adsorption and tar reforming. The H2 concentration increased significantly with an increase in the WMP to MSW mass ratio, while CO2 decreased. A significant effect of temperature and steam rate was also observed on the produced gas composition, gas yield, and tar content. This study helps us to understand the effect of WMP addition in MSW gasification process and thus assists in the industrial application. 相似文献
18.
A standard ISO Life Cycle Assessment study was carried out to evaluate the environmental sustainability of electricity production from an anaerobic digestion (AD) plant using a mixture of dedicated energy crops, agricultural residues and livestock effluents as input materials. The functional unit was 1 MJ of electricity. System boundaries were from cradle to grave and covered all the phases from energy crops cultivation to the production of biogas and its use in a Combined Heat and Power plant to produce electricity. Liquid and solid digestate storage and spreading on agricultural land were included. Primary data were collected from the AD plant for all the above phases. Since heat produced is used only internally, no allocation was applied in the study. As regards digestate management, CH4 emissions were calculated from literature, whereas four literature methods were applied for calculation of nitrogen emissions with the goal to perform a sensitivity analysis on LCA results. ILCD Handbook impact assessment methodologies were used. Results show that the main hotspots are energy crops cultivation and the management of digestate, mainly because of both nitrogen and methane emissions, affecting Global Warming, Acidification, Marine and Freshwater Eutrophication. Finally, a detailed Monte Carlo analysis, was carried out to evaluate the results uncertainty. The study represents the state of the art about the environmental performance of the AD plant with the use of sensitivity and uncertainty analysis, which both improve the reliability of results, and allows drawing general conclusions on how to mitigate the environmental impacts of AD process. 相似文献
19.
《International Journal of Hydrogen Energy》2020,45(41):21068-21086
In this paper, the performance of a solar gas turbine (SGT) system integrated to a high temperature electrolyzer (HTE) to generate hybrid electrical power and hydrogen fuel is analyzed. The idea behind this design is to mitigate the losses in the electrical power transmission and use the enthalpy of exhaust gases released from the gas turbine (GT) to make steam for the HTE. In this context, a GT system is coupled with a solar tower including heliostat solar field and central receiver to generate electrical power. To make steam for the HTE, a flameless boiler is integrated to the SGT system applying the SGT extremely high temperature exhaust gases as the oxidizer. The results indicate that by increasing the solar receiver outlet temperature from 800 K to 1300 K, the solar share increases from 22.1% to 42.38% and the overall fuel consumption of the plant reduces from 7 kg/s to 2.7 kg/s. Furthermore, flameless mode is achievable in the boiler while the turbine inlet temperature (TIT) is maintained at the temperatures higher than 1314 K. Using constant amounts of the SGT electrical power, the HTE voltage decreases by enhancing the HTE steam temperature which result in the augmentation of the overall hydrogen production. To increase the HTE steam temperature from 950 K to 1350 K, the rate of fuel consumption in the flameless boiler increases from 0.1 m/s to 0.8 m/s; however, since the HTE hydrogen production increases from 4.24 mol/s to 16 mol/s it can be interpreted that the higher steam temperatures would be affordable. The presented hybrid system in this paper can be employed to perform more thermochemical analyses to achieve insightful understanding of the hybrid electrical power-hydrogen production systems. 相似文献
20.
Four accessions of cultivated sunflower (Helianthus annuus) and silverleaf sunflower (Helianthus argophyllus), were each grown in three locations (Georgia, British Columbia, and Iowa) at different planting densities and phenotyped for biomass-related traits and wood biochemistry. In most environments, H. argophyllus produced significantly more biomass than H. annuus. Cell wall chemistry for a subset of plants grown in Georgia and Iowa was assessed using analytical wet chemistry methods to measure lignin and sugar content/composition. The analysis of lignin and the S/G-lignin ratios for a larger number of samples (n > 250) was also assessed by high-throughput pyrolysis Molecular Beam Mass Spectrometry. Average pyMBMS estimated lignin content (i.e., dry weight fraction) for 60 °C dried basal stem samples of H. annuus and H. argophyllus was 29.6% (range, 24.0%–34.6%) and 28.6% (range, 24.6%–33.3%), respectively when averaged across all environments. The average S/G lignin mass ratio was 1.5 (range, 1.0–2.0) for H. annuus and 1.7 (range, 1.0–2.4) in H. argophyllus. Stem samples from these two species only differed statistically for a few cell wall chemistry traits; however, accession level differences within each species were apparent. Cell wall chemistry in both species was significantly affected by both location and planting density, thus demonstrating the need to select for these traits in the environment for which the crop will be produced. Overall, these results show that cultivated sunflower and silverleaf sunflower both possess the necessary phenotypic diversity to facilitate the development of a hybrid sunflower with improved lignocellulosic biofuels traits, namely increased biomass, decreased lignin, and increased glucan. 相似文献