首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
山东乳山金矿床的流体包裹体和氢氧同位素地球化学研究   总被引:4,自引:0,他引:4  
《地球化学》1995,24(C00):141-149
  相似文献   

2.
3.
卡房铜多金属矿床位于云南省个旧锡多金属矿集区, 作为该区南段典型的铜多金属矿床, 其深入的成矿流体性质及成矿物质来源研究尚为薄弱, 限制了对该矿床成因的深入认识。本文对产于玄武岩中的似层状铜多金属矿体(主要成矿类型)开展了精细的野外岩相学、矿物学、C-H-O同位素及流体包裹体原位成分分析。结果显示, 流体包裹体主要为气液两相水溶液包裹体, 石英流体包裹体均一温度为 264.5~330.5 ℃、盐度w(NaCleq)为16.24%~18.20%、密度为0.853~0.924 g/cm3; 萤石流体包裹体均一温度为199.8~339.1 ℃、盐度w(NaCleq)为8.81%~18.88%、密度为0.822~0.955 g/cm3; 方解石流体包裹体均一温度为112.1~199.4 ℃、盐度w(NaCleq)为4.96%~10.86%、密度为0.910~1.011 g/cm3, 表明卡房铜多金属矿床成矿流体具有中低温、中低盐度、低密度特征, 且早阶段到晚阶段, 成矿温度和流体盐度明显降低。与Cu矿共生的石英δDV-SMOW值为–83.9‰ ~ –78.9‰, δ18OH2O值为4.63‰~12.14‰, 方解石δ13CV-PDB值为–7.11‰~ 0.64‰; 同时, 石英单个流体包裹体原位分析结果显示流体包裹体富集大离子亲石元素, 如Na、K、Rb、Cs、Sr等。这些特征暗示了流体可能来源于与花岗质岩浆有关的热液流体, 热液流体上升过程中与围岩碳酸盐岩发生强烈的水-岩反应; 该过程可能萃取了玄武岩层中的Cu物质, 诱发了Cu的富集并最终成矿。  相似文献   

4.
湘中杏枫山金矿床流体包裹体特征及其对矿床成因的指示   总被引:2,自引:0,他引:2  
肖静芸  彭建堂  胡阿香  木兰 《地质论评》2020,66(5):1376-1391
杏枫山金矿是湘中盆地典型的石英脉型金矿床,矿床位于白马山复式岩体的外接触带,主要赋存于新元古界板岩—千枚岩中。为了查明杏枫山金矿床的成矿流体特征,并揭示其矿床成因,本文在对该金矿的矿床地质特征、矿物共生关系进行了野外调查和室内镜下研究的基础上,利用岩相学、显微测温以及激光拉曼显微探针分析等技术手段,对该金矿的不同期次石英中的包裹体开展了系统研究。研究结果表明:成矿期石英脉呈席状产出,其流体包裹体以富液相为主,含少数富气相包裹体和CO2包裹体,流体包裹体的均一温度在220~420℃范围内,盐度为0. 35%~11. 94% NaCleqv;成矿后石英中流体包裹体的均一温度和盐度均明显小于成矿期。该金矿床的成矿流体属中高温、贫CO2的还原性H2O—NaCl(±KCl)—CO2—CH4—N2体系,减压沸腾作用造成成矿流体的氧逸度、pH值改变,是导致该区金矿石沉淀的主要原因。湘中杏枫山金矿的成矿温度高,成矿压力较小,成矿流体及地质特征均明显有别于国内外典型的造山型金矿床。结合其围岩蚀变类型和矿物共生组合等特征,可推断杏枫山金矿床属于与侵入岩有关的金矿体系(IRGS)。  相似文献   

5.
李新俊  刘伟 《岩石学报》2002,18(4):551-558
在详细的矿床地质研究基础上,对马庄山金矿床流体包裹体和氢、氧、硫、铅同位素组成进行了研究。成矿流体具有中温、中低盐度、富H2O、CO2和富Na^ 、K^ 、Cl^-离子等特征。氢、氧、硫同位素组成表明,成矿流体存在着两个主要来源:岩浆流体和大气降水来源的加热地下水。铅同位素组成分布区间较为宽广且构成良好的线性相关(R^≥0.98),反映金属物质的多源性以及地壳和地幔各个储库的混合趋势。显微温度计及气体组分间的协变关系的不一致性,排除了去气作用存在的可能性。流体包裹体和同位素综合研究表明,两种来源流体发生了混合作用,从而导致了矿石矿物和金的沉淀。  相似文献   

6.
选取西藏冈底斯斑岩成矿带东段的邦铺矿床斑岩矿区2条勘探线上的11个钻孔,进行了详细的岩芯编录和矿物组合、脉体穿切关系研究,将该矿床内与斑岩成矿相关的脉体划分为A、B、D脉3种类型。通过对矽卡岩矿区的详细地表及平硐观察,发现了石榴子石、阳起石、绿帘石等一系列代表流体演化特征的矿物。邦铺矿床具有典型斑岩型矿床的蚀变分带特征,从中心向外依次表现为黑云母化-硅化-绢云母化-青磐岩化,泥化呈"补丁状"无规则分布在绢云母化和青磐岩化之上。矽卡岩化则以典型矽卡岩矿物的出现为特征。A脉中绝大多数包裹体均一温度为320~550℃,盐度主要集中在两个区间内,分别为17.0%~22.0%(气液两相包裹体)和30.8%~67.2%(含子晶包裹体);B脉中绝大多数包裹体均一温度为380~550℃,盐度主要集中在1.6%~10.1%、23.2%~24.5%(气液两相包裹体)和30.8%~67.2%(含子晶包裹体)3个区间内;D脉中绝大多数包裹体均一温度为213~450℃,盐度为7.3%~11.6%。流体包裹体研究表明,与斑岩成矿的相关流体具有从高温、高盐度向低温、低盐度演化的特征;形成A、B脉的流体发生了强烈的沸腾作用,由此导致的压力波动是Mo、Cu沉淀的主要原因。16件与斑岩成矿相关的石英δDV-SMOW=-107.1‰~-185.8‰,δ18OV-SMOW=9.5‰~14.5‰;15件与矽卡岩成矿相关的石榴子石、绿帘石、石英及方解石δDV-SMOW=-184.7‰~-126‰,δ18OV-SMOW=3.9‰~12.9‰;4件斑岩成矿后期的方解石δ18OV-SMOW=-1.6‰~10.4‰,δCV-PDB=-6.5‰~-3.4‰;6件与矽卡岩成矿相关的方解石δ18OV-SMOW=1.8‰~11.9‰,δCV-PDB=-5.1‰~4.6‰。C_H_O同位素分析数据表明,邦铺整个斑岩-矽卡岩成矿系统流体主要经历了岩浆脱水去气和大气降水加入这两大地质过程。  相似文献   

7.
海连富  刘安璐  陶瑞  白金鹤  宋扬 《地球科学》2021,46(12):4274-4290
卫宁北山地区是宁夏境内最有望实现找矿突破的多金属矿成矿区之一,已发现众多Au、Ag、Cu、Pb、Zn、Fe、Co等矿点或矿化点.金场子金矿是该地区已发现的最大的金矿床,矿体主要赋存在前黑山组及中宁组内的层间断裂破碎带中,呈东西向带状分布,产状与地层近乎一致.区域上除少量闪长玢岩脉出露外,岩浆岩不发育.为了探讨金场子金矿...  相似文献   

8.
赛博铜多金属矿位于西天山赛里木湖—四台海泉铜铅锌成矿带内,是该区域新突破的中-大型铜矿床.通过光薄片鉴定及流体包裹体分析得出,该矿床矽卡岩化发育,成矿期次可划分为退蚀变矽卡岩阶段(S1)、石英-硫化物阶段(S2)和石英.碳酸盐阶段(S3);包裹体类型为纯液相Ⅰ型、富液两相Ⅱa型、富气两相Ⅱb型、含子矿物Ⅲa型(含石盐子晶)和含子矿物Ⅲb型包裹体(不含石盐子晶);成矿流体显示初期以高温、高盐度,金属物质少量出现,成矿期大气降水混入,温度、盐度逐渐降低,流体沸腾、金属物质大量析出,再至晚期温度、盐度衰减并发育碳酸盐化的演化过程.C-H-O同位素显示,成矿流体早期以初始岩浆水为主,晚期以大气降水为主.S、Pb同位素表明成矿物质为壳-幔混源.总体上,赛博铜多金属矿是形成于活动陆缘岩浆弧环境的典型钙矽卡岩型矿床.  相似文献   

9.
地堡那木岗铜(金)矿床位于西藏多龙矿集区,探明储量达大型规模;矿床的成矿过程分为岩浆作用阶段、钾长石-硫化物阶段、石英-多金属硫化物阶段、碳酸盐-黄铁矿阶段和氧化作用阶段,其中石英-多金属硫化物阶段和碳酸盐-黄铁矿阶段为主要成矿阶段;为查明成矿流体特征,确定矿床成因类型,对取自深部矿石中的碳酸盐脉(均为碳酸盐-黄铁矿成矿阶段含黄铁矿黄铜矿石英脉)开展流体包裹体的岩相学观察和显微测温分析。分析结果表明,上述矿物中主要发育富液相、富气相和含子矿物三相包裹体。其中,富液相包裹体的均一温度与盐度分别为:t=80~600℃、w(NaCl,eq)=4.48%~18.79%;富气相包裹体的均一温度和盐度分别为:t=240~560℃、w(NaCl,eq)=5.09%~9.73%;含子矿物三相包裹体的均一温度与盐度分别为:t=240~560℃、w(NaCl,eq)=36%~72%。综合分析认为,地堡那木岗铜(金)矿床成矿流体发生了强烈的沸腾作用,流体沸腾作用是该矿床的重要成矿机制。通过与国内外典型斑岩型矿床与高硫化型浅成低温热液矿床的流体包裹体特征进行对比,其与斑岩型矿床的中高温、高盐度流体特征相似。因此,推测地堡那木岗矿床的成因类型为斑岩型铜(金)矿床。  相似文献   

10.
永新金矿是近年在小兴安岭西北部嫩江-黑河构造混杂岩带新发现的大型金矿床,由于研究程度较低,该矿床的成因仍然存在较大争议。为了准确限定永新矿床的成因类型,文章开展了野外地质调查和室内镜下观察。结果显示,永新金矿床矿石矿物主要包括自然金、黄铁矿、闪锌矿、方铅矿和少量黄铜矿等,其中,自然金主要以裂隙金和包裹金形式赋存在黄铁矿中。围岩蚀变类型主要包括钾长石化、硅化,绢云母化,高岭石化、碳酸盐化、绿泥石化和局部冰长石化,其中硅化与金矿化关系最为密切。对永新金矿床开展了流体包裹体分析和稳定同位素(S、Pb、H和O)测试,结果表明,永新金矿床流体包裹体以气液两相为主,从成矿早期到晚期各阶段平均成矿温度由305℃→237℃→202℃→162℃,逐渐降低;盐度w(NaCleq)由7.5%→3.4%→2.9%→1.7%,逐渐减低;流体密度由0.78→0.84→0.89→0.92 g/cm3,微弱增高,但整体均较低。成矿流体为典型中低温、低盐度和低密度流体,成矿深度小于1.1 km,形成于浅成环境。包裹体激光拉曼光谱分析结果显示,流体气相成分以H2O为主,见少量C...  相似文献   

11.
夏锐  邓军  卿敏  王长明  李文良 《岩石学报》2013,29(4):1358-1376
青海大场金矿田位于可可西里-巴颜喀拉晚古生代-中生代浊积盆地褶断带内,是川陕甘交接地区的一个超大型矿田.矿床受NW向构造破碎蚀变带控制,赋矿围岩为三叠系炭质砂板岩,矿石矿物主要为黄铁矿、毒砂和辉锑矿,脉石矿物主要为石英、长石和方解石.金的赋存状态以微细粒金为主.大场金矿田矿石中流体包裹体主要为盐水溶液包裹体(W型)、少量的含CO2包裹体(C型)和富CO2包裹体(PC型)组成.成矿流体具有中低温(180~ 200℃)、低盐度(2%~ 5% NaCleqv)、成矿深度为7.9 ~ 12.3km的特征.气、液相成分测定显示气相成分以N2、CO2 O2、H2O为主;液相成分中阳离子以Ca2+、Na+、Li+、K+为主,阴离子以富SO42-、Cl-、NO3-、F-为特点,成矿流体属Ca2++ Na++SO42-型,有机碳参与了流体成矿作用.氢氧同位素组成分别为δD=-62%~-106%,δ18OH2O=3.1%~ 10.5%,说明成矿流体主要为建造水,也有岩浆流体的加入.根据大场金矿田成矿地质背景、流体特征及演化和成矿的构造背景和机制,本文首次提出大场金矿为类卡林型金矿,为研究该区金矿成矿作用提供了参考.  相似文献   

12.
淘金冲金矿成矿流体地球化学和矿床成因研究   总被引:6,自引:1,他引:6  
阎明  马东升  刘英俊 《矿床地质》1994,13(2):156-162
包裹体地球化学和氢氧同位素研究结果表明,淘金冲金矿床成矿溶液为中低温,中压,弱碱性和还原性的Ca-Mg-C-S体系,成矿液早期以变质水为主,中晚期则以建造水为主(大气降水来源),明显具混合成因特点,其矿成因类型属受地下水改造成因的层控金矿或特征的“江南型”金矿。  相似文献   

13.
黑龙江乌拉嘎大型金矿床流体包裹体特征及矿床成因研究   总被引:3,自引:2,他引:3  
乌拉嘎金矿床是受断裂构造和中酸性侵入体联合控制的浅成低温热液型矿床,区内黑龙江群变质岩为成矿提供物源.燕山期花岗斑岩是主要的容矿围岩.深部岩浆源为成矿提供了热动力。矿体受构造引张部位和构造交汇部位控制.在空间上侧伏斜列。矿石矿物主要有自然金、黄铁矿、白铁矿、辉锑矿、自然银等,脉石矿物有玉髓状石英、胶状蛋白石、碳酸盐、冰长石、绢云母、高岭土等;矿石结构主要为胶状结构、细粒状结构和碎裂结构,矿石构造为脉状、网脉状和角砾状构造.矿石的矿物组合和组构均显示典型的低温矿物组合和组构特点。流体包裹体研究表明,石英中主要发育气液两相及少量单液相包裹体.成矿流体属H2O—NaCl体系类型。成矿流体具有低盐度(1.22%-5.4%NaCl)、低密度(0.88--0.96g/cm^3)的特征,成矿温度为140~220℃,成矿平均压力为23.24MPa,形成深度为2.32km。通过氢、氧同位素分析认为,成矿流体δDSMOW,值为-78.25‰-132.64‰,6moHp值为-3.7‰~6.23‰,表明成矿流体主要来自大气降水。综合研究表明.乌拉嘎金矿属于由中性、近还原和低温流体形成的低硫化型浅成低温热液金矿床。  相似文献   

14.
大东沟金矿床位于华北克拉通北缘东段,辽东古裂谷的西端。矿体主要产于古元古界盖县岩组二段绢云千枚岩内,呈似层状、透镜状、褶皱状、脉状,受NWW向褶皱构造和NE向断裂构造共同控制。围岩蚀变主要为黄铁矿化、硅化、绢云母化、绿泥石化及少量碳酸盐化。金属矿物以黄铁矿为主,次为毒砂和磁黄铁矿,另有少量白铁矿、黄铜矿、方铅矿、自然金、银金矿等。岩浆热液期为主成矿期,可划分为4个阶段:早期无矿石英阶段(1)、石英-金-毒砂-黄铁矿阶段(2)、石英-金-多金属硫化物阶段(3)、石英-碳酸盐阶段(4),其中(2)和(3)阶段为金主要成矿阶段。该矿床岩浆热液期石英中发育5种类型的流体包裹体:富液相包裹体(Ⅰ型)、富气相包裹体(Ⅱ型)、含子矿物三相包裹体(Ⅲ型)、CO2-H2O三相包裹体(Ⅳ型)和单相包裹体(Ⅴ型)。Ⅲ-1阶段主要发育Ⅰ型、Ⅱ型和Ⅲ型包裹体,均一温度155~482℃,w(NaCleq)5.86%~34.51%;Ⅲ-2阶段主要发育Ⅰ型、Ⅱ型和Ⅲ型包裹体,均一温度111~450℃,w(NaCleq)1.91%~33.59%;Ⅲ-3阶...  相似文献   

15.
胶东三山岛金矿中深部成矿流体对比及矿床成因   总被引:13,自引:6,他引:7  
三山岛金矿位于胶东西北部,属于典型的破碎蚀变岩型金矿。流体包裹体研究表明该矿床为中温、中低盐度H2O-CO2-NaCl±CH4流体;中深部成矿流体对比研究表明,在纵深超过2000m范围内,成矿流体具有较一致的成矿流体介质条件,主成矿均一温度为170~330℃,成矿压力为50~255MPa。H、O、C同位素表明,深源流体参与了成矿作用,很可能是与金矿床伴生的基性幔源岩浆脱水形成的岩浆水,在地壳浅部遭受到大气降水的混合,而S同位素研究进一步揭示了成矿物质具有多源性,矿区浅表在成矿晚期可能受到了表生硫影响而导致δ34S偏高。水岩反应、成矿应力场转变及表面吸附电化学还原反应等导致金沉淀成矿。  相似文献   

16.
白乃庙金矿位于中亚造山带南缘白乃庙岛弧区域,是华北地台北缘中段金成矿远景区的重要组成部分.本文通过白乃庙金矿床流体包裹体和C-H-O-S稳定同位素的系统工作,揭示其成矿物质来源、成矿流体性质以及矿床成因.流体包裹体测试均一温度(126.5~283.4℃)和盐度(0.88% ~7.59%NaCl equiv)显示成矿流体...  相似文献   

17.
湖南漠滨金矿流体包裹体研究和成因探讨   总被引:1,自引:1,他引:1  
丁清峰  王冠 《世界地质》2009,28(4):467-475
对漠滨金矿流体包裹体的最新研究, 获得成矿流体物理化学参数: 平均均一温度为199.14℃, 平均盐度为6.01wt% (NaCl) , 平均密度为0.92 g/ cm3。据此估算, 漠滨金矿的平均成矿压力为 16.36 Mpa, 平均成矿深度为1.64 km。结合地质特征分析和前人的研究结果, 认为漠滨金矿属于造山型金矿床的浅成类型, 并推断漠滨金矿深部找矿潜力较小。  相似文献   

18.
丁清峰  王冠  孙丰月  张本龙  金圣凯 《岩石学报》2010,26(12):3709-3719
通过详尽的野外调研和室内研究,本文简要总结了大场金矿床的矿床地质特征。结合流体包裹体显微测温和毒砂地温计,认为大场金矿成矿阶段由早到晚可划分为贫矿化石英阶段、石英硫化物阶段、石英辉锑矿阶段、含明金石英阶段和石英方解石阶段共五个阶段,其中前四个阶段分别形成贫矿化石英脉(成矿温度350℃左右,均一温度为280~360℃)、金-石英-硫化物碎裂岩型矿石(成矿温度301℃左右,均一温度为220~280℃)、金-石英-辉锑矿型矿石(均一温度为160~220℃)和明金-石英脉型矿石(均一温度为160~220℃),最晚的石英方解石阶段则使先前形成的四类岩/矿石发生轻微硅化和方解石化蚀变(均一温度小于160℃)。结合流体包裹体激光拉曼光谱分析,认为大场金矿成矿流体经历了早阶段静岩压力系统(成矿压力为215MPa,成矿深度8.1km)下的低盐度H2O-CO2-NaCl体系,中阶段静岩向静水压力过度系统(成矿压力为49~108MPa,成矿深度5.5~8.6km)下的低盐度H2O-NaCl体系,以及晚阶段静水压力系统(估计成矿压力小于40MPa)下的低盐度H2O-NaCl体系。最后认为,大场金矿床的成因类型属于中浅成造山型金矿床。  相似文献   

19.
小秦岭文峪金矿床流体包裹体研究及矿床成因   总被引:3,自引:2,他引:3  
周振菊  蒋少涌  秦艳  赵海香  胡春杰 《岩石学报》2011,27(12):3787-3799
文峪金矿位于小秦岭矿田南部,其产出受脆-韧性剪切带控制,赋矿围岩为太华群变质杂岩.根据脉体穿切关系和矿物交代关系,可以将文峪金矿流体成矿过程分为早、中、晚三个阶段,其热液石英中发育CO2-H2O型、纯CO2型和H2O溶液型三种类型流体包裹体.平阶段石英中原生包裹体主要是CO2-H2O型和纯CO2型,其成分为CO2+H2O±N2±CH4,均一温度集中在290~330℃,盐度为1.02%~9.59% NaCleqv;中阶段为主成矿阶段,该阶段石英中包含了所有3种类型的包裹体,其中以CO2-H2O型包裹体为主,获得CO2-H2O和水溶液包裹体均一温度集中在250~290℃,盐度为0.02%~12.81%NaCleqv;晚阶段石英仅发育水溶液型包裹体,具有较低的均一温度(114~239℃)和盐度(4.18%~8.95% NaCleqv).根据CO2-H2O型包裹体计算早、中阶段压力分别为130 ~ 178MPa和85 ~ 150MPa,对应的成矿深度分别为4.7~6.5km和3.1~5.5km.总体而言,文峪金矿的初始流体具有中高温、富CO2、低盐度的变质流体特征,晚成矿阶段流体演化为低温、低盐度水溶液流体,流体的不混溶导致了主成矿期矿质的大量沉淀,文峪金矿为中浅成的造山型矿床.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号