首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigate an initial burst pressure and residual burst pressure at the end of life (EOL) of compressed hydrogen containers and report that a container damage caused by a drop test has a large influence on burst pressure. The container damage induced through hydraulic sequential tests is investigated using nondestructive evaluations to clarify a strength decreasing mechanism. An ultrasonic flaw detection analysis is conducted before and after the drop test and indicated that the damage occurred at the cylindrical and dome parts of the container after the drop test. An X-ray computed tomography imaging identifies a delamination inside laminated structure made of carbon fiber reinforced plastics (CFRP) layer, with some degree of delamination reaching the end boss of the container. Results suggest that a load profile fluctuates in the CFRP layer at the dome part and that a burst strength of the dome part decreases.  相似文献   

2.
To investigate the thermal and structural characteristics of a flight-scale LH2 tank during ground fillings, a CFD model and a structural analysis model are established to simulated the chill-down process and the induced thermal stress behavior of the tank, respectively. Results show that, at the early stage of filling, a severe temperature gradient appears at the liquid level, leading to a remarkable local concentration of thermal stress, while the maximal thermal deformation is at the outlet region. After the local wall is chilled down sufficiently, the temperature jump at the interface vanishes as well as the local thermal stress, while the maximal thermal deformation is located at the middle height of tank. The thermal stress is most serious at the beginning stage of filling and the maximum appears at the tank bottom. Moreover, the non-uniformity of the temperature distribution and the average thermal stress level within the tank wall both increase with the filling rate. At a filling rate of 7.5 kg·s−1, the maximal thermal stress and thermal deformation of the target tank are more than 70 MPa and 30 mm.  相似文献   

3.
The present work aims to assess the influence of hydrogen on strain controlled low cycle fatigue (LCF) properties of P91 steel. Specimens were electrochemically charged using H2SO4 solution, subsequently uniaxial tensile and LCF tests were performed at ambient temperature. An increase in strength and reduction in elongation are noticed for hydrogen charged samples relative to as received or uncharged specimens. Hydrogenated specimens depict drastic reduction in fatigue life as compared to the uncharged specimens. Irrespective of imposed strain amplitude, P91 steel show cyclic softening nature throughout its life. The peak stress amplitude and rate of cyclic softening for hydrogenated specimens are found to be more than the as received specimens at all strain amplitudes. The magnitude of proportional limit from master curve depicts that as received specimen exhibit near Masing behavior whereas hydrogenated specimens reveal non-Masing behavior. Local misorientation analyses carried out by electron back scattered diffraction technique are correlated with the evolution of local plastic strain and substructural development. The fracture morphology of tensile test transformed from dimple failure for uncharged specimen to quasi cleavage fracture for hydrogenated specimens. Finite element simulation considering Chaboche kinematic hardening rule is utilized to simulate the cyclic stress-strain behavior of as received and hydrogenated specimens.  相似文献   

4.
This paper presents the approximate integral solutions to the one-dimensional model describing the charging process of stratified thermal storage tanks with fluid mixing at the inlet. The temperature is assumed to be a form of the Fermi–Dirac distribution function, which can be separated into two sets of cubic polynomials for the hot and cold sides of the thermal boundary layers. The proposed approximate integral solutions are compared with previous works on approximate analytic solutions and show reasonable agreement. This approach, however, benefits from reduced mathematical complexity as compared with the complicated solution form and unstable convergence of the series solution found in the previous analytic solutions. For the ideal case of no fluid mixing at the inlet, the thermocline thickness is proportional to the square root of time and reversely proportional to the flow rate. However, if the fluid is mixed perfectly in the region near inlet, the thermocline thickness could be thicker as the flow rate increases because of the increased mixing region caused by promoted flow mixing in this region. Thus the optimal flow rate depends on the relationship between the flow rate and the size of the mixing region.  相似文献   

5.
Latent heat thermal energy storage tanks, where carbon fiber brushes are inserted to improve the heat transfer rates in the phase change materials, are installed in an air conditioning system of a building as a space heating resource. The measured outlet fluid temperatures are compared with the numerical ones predicted by a previously developed three dimensional heat transfer model. The preliminary numerical results had unallowable prediction errors, which probably resulted from poor contact between the brushes and the heat transfer tubes due to an installation problem of the brushes. However, the numerical results predicted by a corrected model agree well with the experimental ones under various operating conditions. The effect of the brushes on the thermal outputs of the tanks is then investigated using the corrected model. The result shows that the brushes contribute to saving space and reducing the cost of the tanks.  相似文献   

6.
Some complete experimental data sets, not only on the hydrogen temperature within the tank during filling, but also on the supplied temperature and pressure from the station have been opened for analysis of the temperature change with time. The data were independently obtained for 6 different conditions and have been analyzed and checked to validate the Monde et al. model. It is found that the measured temperatures are well predicted using the software based on the model and the heat loss during filling with hydrogen is also well predicted, if a suitable heat transfer coefficient is adopted.  相似文献   

7.
This paper discusses the effect of AB2 (Ti(Cr, Fe)2) phase on the hydrogenation properties of a Ti–Fe–Cr alloy system. Five Ti–Fe–Cr based alloys were fabricated by varying the Cr content. The microstructural analysis results revealed that the fraction of the Ti(Cr, Fe)2 phase increased with the increasing Cr content. The first hydrogenation test results indicated that all the alloys could absorb a significant amount of hydrogen at room temperature (30 °C) without a separate activation process. This behavior improved when the Ti(Cr, Fe)2 phase existed in the AB phase; the kinetics of the first hydrogenation tended to increase with the fraction of Ti(Cr, Fe)2 phase. The enhancement in the first hydrogenation kinetics of the Ti–Fe–Cr based alloys was attributed to the synergetic effect of the interface between the AB and Ti(Cr, Fe)2 phases and the inherent fast hydrogenation of the Ti(Cr, Fe)2 phase. However, the total hydrogen storage capacity decreased when the fraction of Ti(Cr, Fe)2 phase increased.  相似文献   

8.
Porous nickel–iron alloy supported solid oxide fuel cells (SOFCs) are fabricated through cost-effective ceramic process including tape casting, screen printing and co-sintering. The cell performance is characterized with humidified hydrogen as the fuel and flowing air as the oxidant. Effects of iron content on the cell performance and stability under redox and thermal cycle are investigated from the point of view of structural stability. Single cells supported by nickel and nickel–iron alloy (50 wt % iron) present relatively high discharge performance, and the maximum power density measured at 800 °C is 1.52 and 1.30 W cm?2 respectively. Nickel supported SOFC shows better thermal stability between 200 and 750 °C due to its dimensional stable substrate under thermal cycles. Posttest analysis shows that a dense iron oxide layer formed on the surface of the nickel-iron alloy during the early stage of oxidation, which prevents the further oxidation of the substrate as well as the functional anode layer, and thus, making nickel-iron supported SOFC exhibits better redox stability at 750 °C. Adding 0.5 wt % magnesium oxide into the nickel-iron alloy (50 wt% iron) can inhibit the metal sintering and reduce the linear shrinkage, making the single cell exhibit promising thermal stability.  相似文献   

9.
The development of large surface-area and high conductivity electrode is a prerequisite for the construction of high-performance microbial fuel cells. Herein, we report an innovative approach to the fabrication of such high-performance electrodes via the welding assembly of 3D interconnected carbon nanotubes (CNTs) on a carbon-fiber (CF) paper electrode. The minimized interfacial ohmic loss between CNTs and the CF scaffold endowed the microbial fuel cells with the welding-assembled CNT-CF electrodes excellent electrochemical properties with the maximum power density of 2015.6 mW m−2, 10.0 times higher than that obtained with the untreated CP/CNT (499.8 mW m−2) carbon paper anode. As compared to the conventional chemical vapor deposition (CVD) growth technique for fabricating CNT- CF electrodes, this welding assembly approach is more versatile and much easier for up-scaling; on this basis, our work may pave a new avenue to the large-scale production of high-performance microbial fuel cells.  相似文献   

10.
Low cycle fatigue tests were carried out at a temperature of 600 °C using a component specimen of 12%-Cr steel, which simulates a blade root and disc joint for turbines. The growth behavior of micro-cracks in the joint region of the specimens was investigated to clarify the damage mechanism of blade-root joints used in high temperature environments and to improve life assessment methods using finite element analysis. Micro-crack growth behavior similar to that in smooth bar specimens was observed in the specimens tested under conditions of relatively high total strain. Micro-cracks initiation was observed at the notch region of the specimens at an early stage. The crack growth rate increased with surface crack length. The fatigue life of the component specimens under this condition was similar to that of smooth bar specimens. Meanwhile, the component specimens tested under conditions of relatively low total strain showed a different growth behavior. No cracks were observed at the notch region and some micro-cracks were initiated at the edge of the contact region of the specimens in the early stages. Almost no increase in the crack growth rate was observed. Life of the component specimens under this condition was shorter than that of the smooth bar specimens. This might be attributed to fretting fatigue at the contact edge and to mean stresses.  相似文献   

11.
This study uses fuel cell gas diffusion layers (GDLs) fabricated in the laboratory from carbon fiber cloth with different structure in proton exchange membrane fuel cells (PEMFCs), and investigates the relationship between the structure of the carbon fiber cloth and fuel cell performance.The paper discusses the relationship between fuel cell performance and structure of the carbon fiber cloth, and also examines the effect of the carbon fiber cloth’s thickness, air permeability, surface resistivity, XRD and elemental analysis. Carbon fiber cloth is carbonized at rates of 190, 220, 250, 280, and 310 °C min−1 respectively, and the resulting carbon fiber cloth is tested in cells. When the test piece area is 25 cm2, the test temperature 40 °C, the gasket thickness 0.36 mm, and the carbonization rate 280 °C min−1, a fuel cell using the carbon fiber cloth achieves a current density of 1968 mA cm−2 and a maximum power density of 633 mW cm−2 at 0.3 V.  相似文献   

12.
为了解汽轮机寿命损耗情况,对汽轮机高温部件寿命影响因素进行分析。基于低周疲劳理论,建立汽轮机高温部件寿命损耗分析模型,采用定量计算方法分析1 000 MW超超临界机组冷态、热态启动方式下高温部件温度偏差变化情况,计算各边界条件下高温部件等效热应力及寿命损耗,并进行敏感性分析。结果表明:汽轮机低周疲劳寿命损耗率对高温部件温度偏差较为敏感,随着温度偏差的升高,汽轮机寿命损耗率大幅升高;相同的温度偏差出现在不同温度区间时,对汽轮机寿命损耗的影响亦不同,高温区间的温度偏差对寿命损耗率影响较大。汽轮机高温部件寿命评估可以为机组启动期间升温速度控制提供技术支持,降低汽轮机寿命损耗,提高机组运行安全性。  相似文献   

13.
This communication deals with the effect of a temperature gradient, due to difference in temperatures of sunlit collector surface and the surface in contact with the working fluid (heat exchanger fluid), on the performance of solar water heater. The analysis is not restricted to any particular configuration of solar heater. Experimental study of a spiral solar water heater confirms the theoretical prediction of thermal loss with temperature gradient.  相似文献   

14.
This study employed fuel cell gas diffusion layers (GDLs) consisting of carbon fiber paper made from carbon fiber felt with different yard weights in proton exchange membrane fuel cells (PEMFCs), and investigated the relationship between the yard weight of the carbon fiber paper and the fuel cell performance and thickness of the gasket. In this paper we discuss the relationship between carbon fiber felt with different yard weights and fuel cell performance and also explore the effect of carbon fiber paper thickness, air permeability, surface resistivity, and structural study. We focused on the material used for the gas diffusion layer in this study. Carbon fiber paper made in-house in this study contained 10 wt% (all percentages are by weight unless otherwise noted) phenolic resin. When the tested area was 25 cm2, the test temperature was 40 °C, the gasket thickness was 0.06 mm, and the yard weight 70 g m−2, fuel cell current density was 1968 mA cm−2 at a load 0.3 V. When the gasket thickness was 0.36 mm and yard weight was 190 g m−2, fuel current density was 1710 mA cm−2 at a load of 0.3 V.  相似文献   

15.
Brushes made of carbon fibers are used to improve the thermal conductivities of phase change materials packed around heat transfer tubes. The transient thermal responses measured in brush/n-octadecane composites essentially improve as the volume fraction of the fibers and the brush diameter increase. However, there is a critical diameter above which further improvement is not expected due to thermal resistance between the fibers and the tube surface. A two-dimensional heat transfer model describing anisotropic heat flow in the composite is numerically solved. The calculated transient temperatures agree well with the experimental. A simple model is also developed to predict the heat exchange rate between the composite and the heat transfer fluid. The values of the correction factors are identified on the basis of the results for the anisotropic model.  相似文献   

16.
Compressed hydrogen tanks are now widely used for onboard hydrogen storage in fuel cell vehicles (FCVs). However, because of the high storage pressure and the low thermal conductivity of carbon fibre reinforced polymer (CFRP), the emptying of such tanks during driving or emergency release can cause a significant temperature decrease and result in an in-tank gas temperature below the low safety temperature limit of ?40 °C even in warm weather. Once the gas temperature within the tank is lower than ?40 °C, the sealing elements at the boss of the tank may fail, and glass transition of the polymer liner of the type IV tank may occur; both can cause hydrogen leakage and severe safety problems. In this paper, the heat transfer correlations, thermodynamic analyses, computational fluid dynamics (CFD) simulations, experimental studies, and thermal management methods associated with the emptying process of compressed hydrogen tanks are comprehensively reviewed. Future research directions on this topic are suggested.  相似文献   

17.
The suitability of glass-based seal is evaluated for application in intermediate temperature solid oxide fuel cell (SOFC). Several glass-YSZ composite seals are investigated in temperature range from 650 °C to 800 °C. The leakage rates are obviously reduced with temperature increased. The seal containing 20 wt% YSZ exhibits excellent gas tightness and thermal cycle stability, obtaining the leakage rate of 0.005 sccm cm?1 under input gas pressure of 6.8 kPa at 750 °C. Stable leakage rates can be maintained after ten thermal cycles, implying that YSZ addition suppresses crack propagation of the seals. It is also explained by both interfacial bondage and chemical compatibility examination. When large-area-cell is operated during five thermal cycling tests, its performance is found to be constant at 750 °C, all of cell tests achieving OCV of 1.2V and power density of 520 mW/cm2. The above results demonstrate the possibility of using the H1-20 seals for SOFC application.  相似文献   

18.
This paper presents a novel design approach combining isotensoidal structures with non-geodesic winding patterns, which is able to significantly improve the geometric flexibility and structural performance of composite toroidal hydrogen storage tanks. The fiber trajectories are allowed to deviate from geodesics and the slippage coefficient is introduced to enlarge the design opportunities of toroidal pressure vessels. With the aid of the netting theory and fiber slippage law, the governing equations for specifying the meridian profiles of non-geodesic-isotensoids are derived based on the condition of uniform fiber stress. The desired toroids are then obtained by forcing the non-geodesic isotensoidal meridian profiles to become closed. The resulting cross-sectional shapes and winding angle distributions are outlined, corresponding to various slippage coefficients of non-geodesics. The vessel performance factors are determined to demonstrate the better structural efficiency that the application of non-geodesics can achieve. The results show that the vessel performance improves by using non-geodesics, due to the overall decrease in winding angles of the fiber trajectories. It is also concluded that the structural performance of isotensoidal toroids can be further improved with increasing the slippage coefficient of the non-geodesic trajectories.  相似文献   

19.
A systematic experimental and analytical study has been carried out to investigate the effect of vibration loading on the fatigue life of the piping components. Three Point bend (TPB) specimens machined from the actual pipe have been used for the evaluation of Paris constants by carrying out the experiments under vibration + cyclic and cyclic loading as per the ASTM Standard E647. These constants have been used for the prediction of the fatigue life of the pipe having part-through notch of a/t = 0.25 and aspect ratio (2c/a) of 10. Predicted results have shown the reduction in fatigue life of the notched pipe subjected to vibration + cyclic loading by 50% compared to that of cyclic loading. Predicted results have been validated by carrying out the full-scale pipe (with part-through notch) tests. Notched pipes were subjected to loading conditions such that the initial stress-intensity factor remains same as that of TPB specimen. Experimental results of the full-scale pipe tests under vibration + cyclic loading has shown the reduction in fatigue life by 70% compared to that of cyclic loading. Fractographic examination of the fracture surface of the tested specimens subjected to vibration + cyclic loading have shown higher presence of brittle phases such as martensite (in the form of isolated planar facets) and secondary micro cracks. This could be the reason for the reduction of fatigue life in pipe subjected to vibration + cyclic loading.  相似文献   

20.
抽汽压损是一种不明显的热力损失,它使蒸汽的做功能力下降,热经济性降低.加热器抽汽压损的变化将影响火电机组的发电煤耗率,因此定量计算分析抽汽压损变化对火电机组发电煤耗率的影响对节能降耗具有重要的现实意义.文中提出了一种计算抽汽压损变化对煤耗率影响的新方法,该方法以火电机组热经济性分析的统一物理模型和数学模型为基础,建立了基于强度矩阵的抽汽压损变化对煤耗率影响的通用计算模型.本模型不必建立热力系统能量平衡方程与质量平衡方程,且推导简单、计算量小、精度高和通用性强,为研究抽汽压损改变对机组热经济性的影响提供了一种新方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号