首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过热压烧结工艺制备了ZrB2-SiC-AlN和ZrB2-SiC-C两种超高温陶瓷材料。并通过淬火实验表征了所制备材料的抗热震行为。结果表明:这两种超高温陶瓷材料的剩余强度衰减机制有所不同,ZrB2-SiC-AlN的剩余强度主要受热震表面裂纹影响,而ZrB2-SiC-C在热震过程中不产生表面裂纹,其剩余强度主要受表面氧化和热震损伤的影响。ZrB2-SiC-C具有相对较高的热震阻力,增加该材料体系的抗氧化能力对于提高该材料体系抗热震行为具有积极的意义。通过有限元分析定性揭示了ZSC具有较高剩余淬火强度的原因。  相似文献   

2.
本文采用直接熔渗法制备二硅化钼-碳化硅(MoSi2-SiC)复合材料.以碳化硅(SiC)(粒度为0~2.5 mm、≤240目)为主要原料,水溶性树脂为结合剂,经混炼、成型、烘干后得到SiC坯体,再用二硅化钼(MoSi2)(D50 =3μm)粉末掩埋SiC坯体,在真空条件下2000℃保温3h进行熔渗烧结,制备出MoSi2-SiC复合材料.采用阿基米德排水法研究了MoSi2-SiC复合材料的显气孔率、体积密度;采用三点抗弯法测试了MoSi2-SiC复合材料1400℃抗折强度;采用热线法测试了MoSi2-SiC复合材料导热系数;采用X射线衍射测试了MoSi2-SiC复合材料的物相组成;采用SEM测试了MoSi2-SiC复合材料的显微结构;分别采用风冷法和水冷法对比研究了MoSi2-SiC复合材料、重结晶碳化硅(R-SiC)、氮化硅-碳化硅(Si3N4-SiC)三种材料抗热震性.结果表明:MoSi2在烧结过程中部分发生分解,生成了Mo5Si3,MoSi2、Mo5Si3填充于SiC的内部并实现烧结致密化,使MoSi2-SiC复合材料的显气孔率显著降低至5.7;,体积密度为3.59 g.cm-3.MoSi2-SiC复合材料中MoSi2、Mo5Si3含量分别为10wt; ~ 15wt;、3wt; ~ 5wt;.1000℃下MoSi2-SiC的导热系数为46.5W·m-1 ·K-1,显著高于R-SiC(28.3 W.m-1.K-1)材料、Si3N4-SiC(16.8 W.m-1.K-1)材料.综上所述,MoSi2-SiC复合材料的抗热震性能显著优于R-SiC材料、Si3N4-SiC材料.  相似文献   

3.
不同Co含量Al2O3/TiC复相陶瓷的力学性能测试结果表明,综合力学性能最佳的复合材料含Co量为8;质量分数.采用急冷-强度法表征了单相Al2O3、Al2O3/TiC及Co包覆Al2O3/TiC三种材料的抗热震性能.单次热震结果表明,Co包覆Al2O3/TiC的抗热震性能是最佳的.SEM观察发现,随着热震温度的升高,材料的致密度越来越低,力学性能大幅下降,从而导致了抗热震性能的降低.循环热震结果表明,随循环次数的增加,ATC复合材料的抗热震性越来越差.Co的少量添加,虽然对复合材料的热物理性能改变较小,但却较大幅度地提高了ATC复合材料的力学性能,有效缓解了热应力,从而提高了ATC复合材料的抗热震能力.  相似文献   

4.
本文以纳米氧化镁为主要原料,La2O3为添加剂,聚乙烯醇为结合剂,制备烧结性能良好和抗热震性能优异的氧化镁陶瓷.通过常温力学性能、抗热震性能、XRD和SEM等手段对试样进行分析和表征,重点研究La2O3对氧化镁陶瓷烧结性能及抗热震性能的影响.结果表明:La2O3的加入能够促进氧化镁陶瓷的烧结.从微观结构看出La2 O3加入后可与氧化镁形成固溶体及一些不定形态物质,均匀分布在晶界处,减缓试样在热震时裂纹的尖端应力,阻碍裂纹延伸,有效提高氧化镁陶瓷的抗热震稳定性.经1640℃烧结La2O3的加入量为1;的试样相对密度最高,为99.72;;热震后经1560℃烧结La2O3的加入量为2;的试样常温耐压强度达到最大值,58 MPa.  相似文献   

5.
本文以纳米氧化镁,硫酸铝和氨水为原料,采用共沉淀法制备表面由Al2O3前驱体包覆的MgO陶瓷.对烧后试样进行常温烧结性能和抗热震稳定性能检测.试样相组成的确定和显微结构分析是分别通过XRD和SEM手段来进行的.着重研究了由前驱体转化得到的Al2O3作为烧结助剂对氧化镁陶瓷的烧结性及抗热震性的影响.结果表明:加入Al2O3后,试样中生成了镁铝尖晶石,提高了试样的致密度,最大可达到3.48 g/cm3.在试样的显微结构中出现了大量微裂纹和粘连区域,一定程度上优化了试样的抗热震稳定性.  相似文献   

6.
以TiO2和Nb2O5微粉为主要原料,通过高温固相反应烧结制备了TiO2掺杂改性的Nb2O5陶瓷,研究了TiO2含量对Nb2O5陶瓷的晶相组成、烧结性能、热膨胀性能、抗弯强度和抗热震性能的影响.研究表明,2; ~ 8; TiO2掺杂未改变Nb2O5陶瓷的单斜晶系结构,而TiO2含量为12;时,除Nb2O5主晶相外,还生成了少量Ti2Nb10O29晶相.通过加入适量TiO2改性,可明显抑制Nb2O5陶瓷烧成过程晶粒异常生长,改善烧结性能,避免开裂现象,获得较为均匀致密的显微结构,有效提高样品的抗弯强度.Nb2O5陶瓷的热膨胀系数和抗弯强度都随着TiO2含量增加而表现出先增大后减小的变化趋势,其中TiO2含量为4;时,样品具有最高的抗弯强度(75.6 MPa)和低的热膨胀系数(1.42×10-6/℃).添加4; ~12;的TiO2都可明显改善Nb2O5陶瓷的抗热震性能.  相似文献   

7.
采用3Y-ZrO2粉体和石墨烯(Graphene)为原料,利用放电等离子体烧结技术(SPS),烧结制备了Graphene/ZrO2复合陶瓷材料.利用SEM、HRTEM、XRD、激光热导仪等研究了烧结温度和石墨烯含量对Graphene/ZrO2复合陶瓷材料的显微结构、物相和热传导性能的影响.研究结果表明,引入石墨烯不但可以抑制ZrO2晶粒的生长,而且对复合材料的热传导性有着显著的影响;相对于单相ZrO2陶瓷,随着石墨烯的引入, Graphene/ZrO2复合陶瓷材料扩散系数反而降低,其原因可以归结于三个方面:首先,石墨烯含量比较低(0.5~1.5wt;),其次,石墨烯与ZrO晶粒界面处产生的强声子散射作用导致热导下降,最后是Graphene/ZrO2复合陶瓷材料没有完全致密.  相似文献   

8.
将金属Al、Al3Ti和TiB2以AlTiB中间合金的形式引入Al2O3基体材料中,采用热压原位反应生成法制备了Al2O3/TiB2/AlN/TiN复合陶瓷材料.复合材料在烧结过程处于过渡液相烧结,并有新相AlN和TiN生成;对热压烧结后材料的硬度、断裂韧性和抗弯强度进行了测试和分析;分析了复合材料力学性能随AlTiB体积百分含量的变化规律;探讨了复合材料断面断裂方式的变化对其力学性能的影响;并对AlTiB中间合金的细化特性进行了分析.  相似文献   

9.
本文以纳米氧化镁,硫酸铝和氨水为原料,采用共沉淀法制备表面由Al_2O_3前驱体包覆的MgO陶瓷。对烧后试样进行常温烧结性能和抗热震稳定性能检测。试样相组成的确定和显微结构分析是分别通过XRD和SEM手段来进行的。着重研究了由前驱体转化得到的Al_2O_3作为烧结助剂对氧化镁陶瓷的烧结性及抗热震性的影响。结果表明:加入Al_2O_3后,试样中生成了镁铝尖晶石,提高了试样的致密度,最大可达到3.48 g/cm~3。在试样的显微结构中出现了大量微裂纹和粘连区域,一定程度上优化了试样的抗热震稳定性。  相似文献   

10.
以热压烧结制备不同配比的HfC-SiC超高温陶瓷试样,采用超音速火焰分别在2300K和2500K下进行600s烧蚀试验,利用SEM和EDS对烧蚀后材料的微观结构和成分进行分析.结果表明:HfC-SiC体系超高温陶瓷具有优异的抗氧化烧蚀性能,30vol; SiC-HfC材料的抗烧蚀性能优于50vol;SiC-HfC材料与纯HfC材料,其抗氧化烧蚀主要依赖于HfCxOy与SiO2所生成的氧化层.纯HfC陶瓷的烧蚀氧化层与基体粘附性弱,出现了明显的分层,而SiC的加入使得氧化层与基体之间粘附性加强.烧蚀温度升高,烧蚀层厚度增加,抗烧蚀性能下降.与此同时,烧蚀温度提高会使Si元素有较多的损失,导致氧化层不致密;当SiC含量增加到50vol;后,内层HfCxOy骨架松散,不利于材料的抗氧化烧蚀.  相似文献   

11.
以TiC和B4C为原料反应生成TiB2,原位合成了TiB2含量为20%的ZrO2/TiB2复合陶瓷材料.分析了烧结工艺中烧结温度、保温时间和烧结压力对力学性能的影响.结果表明:当烧结温度由1650℃提高到1750℃时,复合陶瓷材料的抗弯强度由820 MPa增加到980 MPa,断裂韧性从7.2 MPa·m1/2提高到9.4 MPa·m12;当烧结温度升至1850℃时,抗弯强度和断裂韧性下降;显微硬度随烧结温度的升高而提高.在烧结温度1750℃压力为30MPa保温时间由30 min提高到45 min时,断裂韧性从8.6 MPa·m1/2提高到9.4 MPa·m1/2;保温时间增加至60 min时,断裂韧性下降;保温时间的变化对材料的抗弯强度、硬度影响不大.烧结压力对复合陶瓷材料的力学性能的影响较小.当烧结参数为1750℃、45 min、30MPa,ZrO2/TiB2复合陶瓷材料的抗弯强度、显微硬度、断裂韧性分别达到980 MPa、13.6 GPa、9.4 MPa·m1/2.  相似文献   

12.
以HfO2、Ta2O5和B为原料,通过硼热还原法原位固溶TaB2制备出HfB2粉体,然后加入20vol;SiC,通过放电等离子烧结(SPS)制备HfB2-SiC复相陶瓷,探究固溶TaB2对陶瓷显微结构和力学性能的影响.结果表明,随着固溶TaB2含量的增加,合成HfB2粉体的粒径显著降低,HfB2-TaB2固溶体的晶格常数减小.在SPS烧结下,固溶不同含量TaB2的HfB2-SiC陶瓷粉均实现全致密,但随着固溶TaB2含量的增加,HfB2-SiC陶瓷材料的硬度和韧性略有降低.  相似文献   

13.
碳化硼是一种应用广泛且极具潜力的结构陶瓷,具有低密度、高强度、高硬度、耐磨损、耐腐蚀等优良性能,但是韧性差、烧结温度高的特性限制了其更为广泛的应用.本文采用原位合成和硅溶渗反应烧结相结合的方式制备TiB2增强B4C陶瓷材料,再分别对所制备的复合陶瓷材料的力学性能和显微组织进行研究,研究结果表明:原位合成的TiB2颗粒分布更加均匀,晶粒更加细小且原位合成的TiB2颗粒主要分布在B4C边界,对B4C陶瓷材料起到增韧补强的作用;当添加量达到8wt;时,弯曲强度出现最大值为269 MPa,断裂韧性最大值为7.73 MPa·m1/2,是TiO2添加量为0wt;的B4C陶瓷材料的2.46倍.  相似文献   

14.
以堇青石粉为原料,碳粉为造孔剂,甲基纤维素(MC)为粘结剂,甘油、乙醇为润滑剂,通过挤压成型和固态粒子烧成法制备具有高开孔率,高强度的陶瓷.通过烧结温度和保温时间的正交实验确定堇青石基体材料的烧结制度.通过考察烧结温度和莫来石纤维(PMF)添加量对纤维陶瓷性能的影响,确定使纤维与基体材料结合程度最佳的烧结制度和莫来石添加量.采用SEM、XRD表征样品的断面形貌和晶相种类,以分析基体材料和莫来石纤维的相互作用对陶瓷性能的影响.结果表明:1300℃下保温2 h的堇青石陶瓷综合性能较佳;含纤维陶瓷的烧结温度越高,莫来石纤维与堇青石基体的结合越紧密,莫来石纤维的增强作用越明显,但高于1300℃时,复合陶瓷的抗压强度会由于堇青石基体材料强度下降而下降;莫来石纤维添加量为20;时,陶瓷开孔率为49.25;,抗压强度为15.69 MPa,比无纤维的陶瓷增加了153;.  相似文献   

15.
采用碳化硼还原法,利用SPS烧结技术烧结制备了ZrB2-B4C复相陶瓷。采用热力学计算、示差扫描量热分析,结合不同温度下产物的物相分析,探讨了两个体系的SPS反应过程;对烧结过程中样品收缩数据进行分析,探讨了ZrB2-B4C体系的烧结机理。结果表明,原位制备ZrB2-B4C复相陶瓷过程中,反应温度与热力学理论计算的结果基本一致;在烧结初期收缩符合粘性流动传质方程,其烧结是表面熔融烧结机制。  相似文献   

16.
采用放电等离子烧结和热压烧结制备了短切碳纤维(Csf)增韧ZrB2-SiC超高温陶瓷复合材料(ZrB2-SiC-Csf),研究了制备工艺对ZrB2-SiC-Csf复合材料微结构演变、力学性能和抗热冲击性能的影响.结果表明:烧结温度是导致碳纤维结构损伤的主要因素,降低烧结温度能有效抑制碳纤维的结构损伤.采用纳米ZrB2粉体在1450 ℃低温热压烧结制备的ZrB2-SiC-Csf复合材料在断裂过程中表现出纤维拔出、纤维侨联和裂纹偏转增韧机制,其临界热冲击温差高达741 ℃,表现出良好的力学性能和优异的抗热冲击性能.从热力学的角度阐明了ZrB2-SiC-Csf复合材料中碳纤维结构损伤的机理,并揭示了该类材料的烧结温度应低于1500 ℃.  相似文献   

17.
采用聚碳硅烷(PCS)和纳米ZrB2粉体为原料在不同温度下热压烧结制备了ZrB2-SiC超高温陶瓷,对比了PCS和颗粒状SiC的引入对ZrB2陶瓷微结构和力学性能的影响.结果表明:通过PCS替代颗粒状SiC制备ZrB2-SiC超高温陶瓷可以形成SiC均匀包覆基体ZrB2晶粒的微观结构,明显促进了材料的低温致密化并抑制了晶粒长大.但力学性能略有降低,其原因可能是PCS裂解产生的微量碳遗留在基体ZrB2的晶界处,弱化了晶界结合强度.本文验证了采用PCS和纳米ZrB2粉体进行热压烧结是实现ZrB2-SiC超高温陶瓷低温致密化的有效手段.  相似文献   

18.
在温度剧烈变化或变化较大的场合,热应力常常会引起材料或器件的性能指标变差,负热膨胀材料为解决这一问题提供了契机.采用固相反应法制备的分子式为ZrScxAl1-xW2VO12(x=0,0.3,0.5,0.7,1)样品,在x=0.3时,表现出近零膨胀性能,且近零膨胀温度区间大(200~600℃),性能稳定,制备过程简单,具有工程应用价值.  相似文献   

19.
将AlTiC中间合金引入Al2O3基陶瓷材料中,研究了复合材料在1450℃的烧结致密度和AlTiC体积百分含量之间的关系;对热压烧结后材料的硬度、断裂韧性和抗弯强度进行了测试和分析;探讨了其断面断裂方式的变化对复合材料力学性能的影响;并对AlTiC中间合金的细化特性进行了分析.  相似文献   

20.
原位合成ZrO2/TiB2复相陶瓷材料的制备及性能   总被引:1,自引:0,他引:1  
以3Y-ZrO2为基体,用TiC和B4C为原料反应生成TiB2,原位合成了ZrO2/TiB2复相陶瓷材料,测试和分析了复合材料的抗弯强度、维氏显微硬度和断裂韧性。结果表明:原位生成的TiB2对基体起到较好的增韧补强作用。当TiB2的质量分数为30%时,复合陶瓷的综合力学性能最好,其抗弯强度、维氏显微硬度及断裂韧性分别达到1060 MPa、14.5 GPa和11.2 MPa.m1/2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号