首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
《粘接》2018,(12)
以低黏度环氧树脂为基体树脂、耐高温的胺类为固化剂,制备了一种真空辅助树脂传递模型(RTM)环氧树脂体系,研究了其黏度特性、树脂的固化反应热和力学性能等。结果表明,我们研发的环氧树脂体系的凝胶时间、固化温度和后处理温度分别为53.2℃、87.39℃和127.7℃。该体系的黏度、凝胶时间、耐热性和高温固化后的力学性能均适合真空辅助RTM成型。  相似文献   

2.
以双马来酰亚胺(BMI)、二烯丙基双酚A(BA)和七苯基倍半硅氧烷三硅醇(POSS-triol)为原料,采用非等温差示扫描量热(DSC)法研究了BMI/BA/POSS-triol体系的固化反应过程。运用Kissinger极值法、Crane法、Flynn-Wall-Ozawa(FWO)等转化率法和T-β(温度-升温速率)外推法确定了改性树脂体系的固化反应动力学参数和固化工艺参数。结果表明:改性树脂体系的固化反应活化能和反应级数(接近于1)均随POSS-triol用量增加而变化不大,说明POSS-triol的加入并没有明显改变BMI/BA体系的固化反应机理;改性树脂体系的凝胶温度为175.7℃,固化温度为226.9℃,后处理温度为271.7℃。  相似文献   

3.
采用非等温DSC(差示扫描量热)法、FT-IR(红外光谱)法、Kissinger-Crane法、Ozawa法和T-β(温度-升温速率)外推法研究了PEK(聚醚酮)改性BMI/DBA(双马来酰亚胺/二烯丙基双酚A)树脂体系的固化动力学过程。研究结果表明:采用Kissinger-Crane法得到的动力学参数与Ozawa法的求解结果相近,PEK改性BMI/DBA的固化反应遵循1级反应机制;BMI/DBA/PEK树脂体系的固化温度为130~210℃,后处理温度为240℃。  相似文献   

4.
风电叶片用环氧树脂固化体系动力学研究   总被引:3,自引:1,他引:2  
以三乙醇胺、BH-1、2-乙基-4-甲基咪唑(2,4-EMI)和2,4,6-三(二甲氨基甲基)苯酚(DMP-30)为促进剂,采用非等温DSC(差示扫描量热)法研究了四种不同环氧树脂(EP)/酸酐体系的固化反应动力学和固化工艺,并采用Ozawa法、Kissinger法和Crane法计算出不同固化体系的动力学参数。结果表明:四种固化体系的活化能分别为25.75、20.93、29.29、33.59 kJ/mol,反应级数均小于0.9(近似于1级反应);固化工艺为"80℃/2 h→100℃/2 h→120℃/2 h";DMP-30/EP/酸酐固化体系的黏度特性和反应特性完全满足风电叶片用复合材料对树脂基体的要求。  相似文献   

5.
环氧改性氰酸酯树脂固化动力学的研究   总被引:1,自引:1,他引:0  
采用示差扫描量热法(DSC)对缩水甘油醚类环氧树脂(E-51)与脂环族环氧树脂(R-122)共同改性的双酚A型氰酸酯(BADCy)树脂的固化反应历程进行了研究。由Kisserger方程求得共聚体系固化反应的表观活化能为60.5 kJ/mol,根据Crane理论求得固化反应级数为0.89,接近于1级反应。该体系起始固化温度为132.1℃,峰顶固化温度为168.7℃,终止固化温度为246.0℃。研究表明,环氧树脂可促进BADCy的固化,改性体系可在177℃以下实现较完全固化。  相似文献   

6.
通过对拉挤成型用树脂配方体系的研究,为拉挤用树脂配方的设计与改进提供思路与方向,从而满足拉挤生产中的不同需求。通过FTIR和GC-MS研究了树脂配方的成分,该配方主要由环氧/酸酐体系加上叔胺类促进剂以及添加剂组成;通过树脂凝胶试验仪和DSC研究了该树脂配方体系的固化反应行为,发现其在140℃时具有最短的凝胶时间(121.0 s)和固化时间(184.5 s),同时在升温速率为5℃/min时的最佳固化反应温度为136℃;对该树脂配方体系和环氧/酸酐体系固化物的力学性能、热变形温度进行了对比研究,发现该树脂配方体系在韧性较好的同时其热变形温度没有受到影响,进一步通过SEM研究发现拉挤用树脂配方体系为韧性断裂而环氧/酸酐树脂体系为脆性断裂。  相似文献   

7.
采用非等温差示扫描量热(DSC)法对纳米二氧化硅/环氧树脂/双马来酰亚胺/氰酸酯(nano-SiO2/EP/BMI/CE)树脂进行了固化反应动力学和固化工艺研究。通过Kissinger法和Ozawa法求得了nano-SiO2/EP/BMI/CE树脂体系固化反应动力学的表观活化能。结果表明:改性CE树脂体系的固化工艺参数为凝胶温度112℃、固化温度195℃及后处理温度213℃,进而确定了改性CE树脂体系的最佳固化工艺条件为"150℃/3 h→180℃/3 h→200℃/2 h";改性CE树脂体系的平均表观活化能为59.90 kJ/mol。  相似文献   

8.
运用示差扫描量热(DSC)法研究了邻苯二甲酸二烯丙基酯(DAP)树脂的固化反应历程。讨论了引发剂对DAP固化特性的影响,并由DSC曲线得到了DAP树脂的固化工艺和动力学参数。通过固化度、FT-IR的测试对DAP树脂在中温条件下的固化情况进行了研究。结果表明:在过氧化二异丙苯(DCP)固化体系中引入BPO可以使DAP树脂在更低温度下引发固化;在BPO、DCP用量均为2%的条件下,确定了体系的凝胶温度、固化温度、后处理温度分别为:100.5℃,124.3℃,137.8℃,表观活化能为129.3 kJ/mol,反应级数为0.950。固化度、FTIR的测试结果表明:DAP树脂在中温条件下可以固化得较完全。  相似文献   

9.
用示差扫描量热法(DSC)在动态条件下对CE2908聚酯/异氰尿酸三缩水甘油酯(TGIC)体系的固化反应动力学进行了研究。运用温度-升温速率图外推法确定了该体系的特征参数∶凝胶温度(T0)、固化温度(Tp)和后固化温度(Tf)分别为113℃、146℃和195℃。采用Kissinger方程和Crane方程计算CE2908聚酯/TGIC酯体系的动力学参数,平均表观活化能Ea为62.32 kJ/mol、频率因子A为8.50×106min-1、反应级数n为0.95。建立了该树脂体系的固化动力学模型。利用所建立的固化动力学方程分别讨论了等温和动态条件下CE2908聚酯/TGIC的固化反应特性,为优化聚酯/TGIC体系粉末涂料固化工艺提供了理论依据,并在生产工艺中验证了其正确性。  相似文献   

10.
利用FTIR研究了邻苯二甲酸二烯丙酯(DAOP)在高温条件下的固化反应,采用DSC研究确定了2,3-二甲基-2,3-二苯基丁烷(DMDPB)/邻苯二甲酸二烯丙酯(DAP)体系的固化行为及其动力学参数。结果表明:DMDPB可在180~210℃下引发DAOP树脂的固化反应,且体系固化过程中放热平缓;DMDPB用量为2%时,体系的凝胶温度、固化温度、后处理温度分别为:173.19℃、195.72℃、209.20℃;其表观活化能为93.488 kJ/mol,反应频率因子为1.02×1010,表观反应级数为0.9223。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号