首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Data on ethylene polymerization over supported LFeCl2/MgCl2 catalysts {L = 2,6‐bis[1‐(2,6‐dimethylphenylimino)ethyl]pyridyl} containing AlR3 (R = Me, Et, i‐Bu, or n‐Oct) as an activator are presented. These catalysts are highly active (100–300 kg of polyethylene/g of Fe h bar of C2H4) and stable in ethylene polymerization at 70–80 °C. Data on the effects of the iron content, AlR3 type, Al(i‐Bu)3 concentration, and hydrogen presence on the catalyst activity are presented. The molecular structure of polyethylene produced with these catalysts (including the molecular masses, molecular mass distribution, branching, and number of C?C bonds) has been studied; data on the effects of AlR3 and hydrogen on the molecular structure are presented. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2128–2133, 2005  相似文献   

2.
The inhibition of ethylene polymerization with radioactive carbon monoxide (14CO) was used to obtain data on the number of active sites (CP) and propagation rate constant (kP) at ethylene polymerization in the temperature range of 35–70 °C over supported catalysts LFeCl2/Al2O3, LFeCl2/SiO2, and LFeCl2/MgCl2 (L: 2,6‐(2,6‐(Me)2C6H3N = CMe)2C5H3N) with activator Al(i‐Bu)3. The values of effective activation energy (Eeff), activation energy of propagation reaction (EP), and temperature coefficients of variation of the number of active sites (ECp = Eeff ? EP) were determined. The activation energies of propagation reaction for catalysts LFeCl2/Al2O3, LFeCl2/SiO2, and LFeCl2/MgCl2 were found to be quite similar (5.2–5.7 kcal/mol). The number of active sites diminished considerably as the polymerization temperature decreased, the ECp value being 5.2–6.2 kcal/mol for these catalysts at polymerization in the presence of hydrogen. The reactions of reversible transformations of active centers to the surface hydride species at polymerization in the presence and absence of hydrogen are proposed as the derivation of ECp. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6621–6629, 2008  相似文献   

3.
Through immobilization of two iron‐based complexes, [((2,6‐MePh)N = C(Me))2C5H3N]FeCl2 ( 1 ) and [((2,6‐iPrPh)N = C(Me))2C5H3N]FeCl2 ( 2 ), on SiO2 pretreated with tetraethylaluminoxane (TEAO), two supported iron‐based catalysts, 1 /TEAO/SiO2 ( 3 ) and 2 /TEAO/SiO2 ( 4 ), were prepared. These two supported catalysts 3 and 4 could be used to catalyze ethylene polymerization with moderate polymerization activity and prepare linear high‐density polyethylene with bimodal molecular weight distribution (MWD). It was demonstrated that immobilization of catalyst could significantly improve molecular weight (MW) of high‐MW fraction of the resultant polyethylene, as well as maintain bimodal MWD of polyethylene produced by the corresponding homogeneous catalysts. Such bimodal MWD of polyethylene produced by supported iron‐based catalysts could be well tailored by varying polymerization conditions, such as ethylene pressure and molar ratio of Al to Fe. It has been proven that TEAO is an efficient activator for both homogeneous and heterogeneous iron‐based catalysts for producing polyethylene with bimodal MWD. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5662–5669, 2004  相似文献   

4.
A series of novel bridged multi‐chelated non‐metallocene catalysts is synthesized by the treatment of N,N‐imidazole, N,N‐dimethylimidazole, and N,N‐benzimidazole with n‐BuLi, 2,6‐dimethylaniline, and MCl4 (M = Ti, Zr) in THF. These catalysts are used for copolymerization of ethylene with 1‐hexene after activated by methylaluminoxane (MAO). The effects of polymerization temperature, Al/M molar ratio, and pressure of monomer on ethylene copolymerization behaviors are investigated in detail. These results reveal that these catalysts are favorable for copolymerization of ethylene with 1‐hexene featured high catalytic activity and high comonomer incorporation. The copolymer is characterized by 13C NMR, WAXD, GPC, and DSC. The results confirm that the obtained copolymer features broad molecular weight distribution (MWD) about 33–35 and high 1‐hexene incorporation up to 9.2 mol %, melting temperature of the copolymer depends on the content of 1‐hexene incorporation within the copolymer chain and 1‐hexene unit in the copolymer chain isolates by ethylene units. The homopolymer of ethylene has broader MWD with 42–46. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 417–424, 2010  相似文献   

5.
Data on ethylene polymerization on homogeneous and supported catalysts based on 2,6-bis(imino)pyridyl Fe(II) complexes activated by trialkylaluminums are considered (activity, the molecular-weight characteristics of polymers, the number of active sites, and the propagation rate constants). Unlike homogeneous systems, the supported catalysts prepared with the use of various carriers (SiO2, Al2O3, and MgCl2) exhibited high stability and activity at 70–80°C and produced high-molecular-weight polyethylene with a broad molecular-weight distribution (MWD). The molecular weights and MWDs of polymers and the propagation rate constant depended on the nature of the carrier only slightly. The reasons for an unusual effect of an increase in the activity of the supported catalysts in ethylene polymerization in the presence of hydrogen are discussed.  相似文献   

6.
Manganese(II) complex catalysts with hydrotris(pyrazolyl)borate ligands have been examined on their catalytic performance in ethylene polymerization and ethylene/1‐hexene copolymerization. The activities of [Mn(L6)(Cl)(NCMe)] ( 1 ) and [Mn(L10)(Cl)] ( 2 ) activated by Al(i‐Bu)3/[Ph3C][B(C6F5)4] for ethylene polymerization go up to 326 and 11 kg mol (cat?1) h?1, respectively, (L6? = hydrotris(3‐phenyl‐5‐methyl‐1‐pyrazolyl)borate anion, L10? = hydrotris(3‐adamantyl‐5‐isopropyl‐1‐pyrazolyl)borate anion). In particular, for ethylene/1‐hexene copolymerization, complex 1 gives high‐molecular‐weight poly(ethylene‐co‐1‐hexene)s with the highest Mw of 439,000 in manganese olefin polymerization catalyst systems. Moreover, the 1‐hexene incorporation by complex 1 seems more efficient than that by [Mn(L3)(Cl)] ( 4 ) (L3? = hydrotris(3‐tertiary butyl‐5‐isopropyl‐1‐pyrazolyl)borate anion). In this work, we demonstrated that the coordination geometry and coordination number are also important factors for ethylene polymerization reaction as well as steric hindrances and ligand frameworks in our manganese(II) catalysts. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5720–5727, 2009  相似文献   

7.
The behavior in propylene polymerization of divalent titanium compounds of type [η6-areneTiAl2Cl8], both as such and supported on activated MgCl2, has been studied and compared to that of the simple catalyst MgCl2/TiCl4. Triethylaluminium was used as cocatalyst. The Ti–arene complexes were active both in the presence and in the absence of hydrogen, in contrast to earlier reports that divalent titanium species are active for ethylene but not for propylene polymerization. 13C-NMR analysis of low molecular weight polymer fractions indicated that the hydrogen activation effect observed for the MgCl2-supported catalysts should be ascribed to reactivation of 2,1-inserted (“dormant”) sites via chain transfer, rather than to (re)generation of active trivalent Ti via oxidative addition of hydrogen to divalent species. Decay in activity during polymerization was observed with both catalysts, indicating that for MgCl2/TiCl4 catalysts decay is not necessarily due to overreduction of Ti to the divalent state during polymerization. In ethylene polymerization both catalysts exhibited an acceleration rather than a decay profile. It is suggested that the observed decay in activity during propylene polymerization may be due to the formation of clustered species that are too hindered for propylene but that allow ethylene polymerization. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2645–2652, 1997  相似文献   

8.
The effect of temperature on the rate of 1‐hexene polymerization over supported titanium–magnesium catalyst of composition TiCl4/D1/MgCl2 + AlR3/D2 (D1 is dibutyl phthalate, D2 is propyltrimethoxysilane, and AlR3 is an organoaluminum cocatalyst) is studied. The unusual data that the polymer rate decreases when temperature is increased from 30 to 70 °C are obtained. The 1‐hexene polymerization rate and the pattern of changes in polymerization rate with temperature depend on a combination of factors such as cocatalyst (AlEt3 or Al(i‐Bu)3) and presence/absence of hydrogen and an external donor in the reaction mixture. These factors differ in their effects on catalytic activity at different polymerization temperatures, so the temperature coefficient (Eeff) values calculated using the Arrhenius dependence of the polymerization rate on polymerization temperature vary greatly. The “normal” Arrhenius plot where polymerization rate increases with temperature is observed only for polymerization with the Al(i‐Bu)3 cocatalyst in the presence of hydrogen and without an external donor. Formation of high‐molecular‐weight polyhexene at low polymerization temperatures results in catalyst particle fragmentation, which may additionally contribute to the increase in polymerization rate as polymerization temperature is reduced.  相似文献   

9.
Three manganese complexes, Mn(acac)3 (acac = acetylacetonate), Cp2Mn (Cp = cyclopentadienyl), and Mn(salen)Cl [salen = 1,2‐cyclohexanediamino‐N,N′‐bis(3,5‐dit‐butyl‐salicylidene)], were used for ethylene and propylene polymerizations. These complexes, in combination with an alkylaluminum cocatalyst such as methylaluminoxane (MAO) or diethyl aluminum chloride (AlEt2Cl), could promote ethylene polymerizations that yielded extremely high molecular weight linear polymers, but were inactive for propylene polymerizations. The counterparts supported on MgCl2 showed activities even for propylene polymerizations and had remarkably enhanced activities for ethylene polymerizations. In the presence of an electron donor such as ethylbenzoate, the MgCl2‐supported manganese‐based catalysts yielded a highly isotactic polypropylene with a high molecular weight. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3733–3738, 2001  相似文献   

10.
Complexes (R^1Cp)(R^2Ind)ZrCl2, the catalysts previously reported active for ethylene polymerization showed high activity in ethylene/1-hexene copolymerization and propylene polymerization in the presence of MAO. The content of 1-hexene in copolymers ranged from 1.2% to 3.2%. In propylene polymerization the complex 1 showed the highest activity, up to 1.2×10^6 g of polypropylene per mol of catalyst per hour. Based on the analysis of NMR spectral data, the relationships between complex structures and polymerization results were explored.  相似文献   

11.
This article discusses the similarities and differences between active centers in propylene and ethylene polymerization reactions over the same Ti‐based catalysts. These correlations were examined by comparing the polymerization kinetics of both monomers over two different Ti‐based catalyst systems, δ‐TiCl3‐AlEt3 and TiCl4/DBP/MgCl2‐AlEt3/PhSi(OEt)3, by comparing the molecular weight distributions of respective polymers, in consecutive ethylene/propylene and propylene/ethylene homopolymerization reactions, and by examining the IR spectra of “impact‐resistant” polypropylene (a mixture of isotactic polypropylene and an ethylene/propylene copolymer). The results of these experiments indicated that Ti‐based catalysts contain two families of active centers. The centers of the first family, which are relatively unstable kinetically, are capable of polymerizing and copolymerizing all olefins. This family includes from four to six populations of centers that differ in their stereospecificity, average molecular weights of polymer molecules they produce, and in the values of reactivity ratios in olefin copolymerization reactions. The centers of the second family (two populations of centers) efficiently polymerize only ethylene. They do not homopolymerize α‐olefins and, if used in ethylene/α‐olefin copolymerization reactions, incorporate α‐olefin molecules very poorly. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1745–1758, 2003  相似文献   

12.
The catalytic properties of a set of ansa‐complexes (R‐Ph)2C(Cp)(Ind)MCl2 [R = tBu, M = Ti ( 3 ), Zr ( 4 ) or Hf ( 5 ); R = MeO, M = Zr ( 6 ), Hf ( 7 )] in α‐olefin homopolymerization and ethylene/1‐hexene copolymerization were explored in the presence of MAO (methylaluminoxane). Complex 4 with steric bulk tBu group on phenyl exhibited remarkable catalytic activity for ethylene polymerization. It was 1.6‐fold more active than complex 11 [Ph2C(Cp)(Ind)ZrCl2] at 11 atm ethylene pressure and was 4.8‐fold more active at 1 atm pressure. The introduction of bulk substituent tBu into phenyl groups not only increased the catalytic activity greatly but also enhanced the content of 1‐hexene in ethylene/1‐hexene copolymerization. The highest 1‐hexene incorporation was 25.4%. In addition, 4 was also active for propylene and 1‐hexene homopolymerization, respectively, and low isotactic polypropylene (mmmm = 11.3%) and isotactic polyhexene (mmmm = 31.6%) were obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Monocyclopentadienyl titanium imidazolin‐2‐iminato complexes [Cp′Ti(L)X2] 1a (Cp′ = cyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), 1b (X = CH3); 2 (Cp′ = cyclopentadienyl, L = 1,3‐diisopropylimidazolin‐2‐imide, X = Cl); 3 (Cp′ = tert‐butylcyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), upon activation with methylaluminoxane (MAO) were active for the polymerization of ethylene and propylene and the copolymerization of ethylene and 1‐hexene. Catalysts derived from imidazolin‐2‐iminato tropidinyl titanium complex 4 = [(Trop)Ti(L)Cl2] (Trop = tropidinyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide) were much less active. Narrow polydispersities were observed for ethylene and propylene polymerization, but the copolymerization of ethylene/hexene led to bimodal molecular weight distributions. The productivity of catalysts derived from the dialkyl complex 1b activated with [Ph3C][B(C6F5)4] or B(C6F5)3 were less active for ethylene/hexene copolymerization but yielded ethylene/hexene copolymers of narrower molecular weight distributions than those derived from 1a/MAO. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6064–6070, 2008  相似文献   

14.
The relation between the polymerization conditions and the distributions of molecular weight (MWD) and chemical composition (CCD) of poly(ethylene‐co‐1‐hexene) made with single supported metallocene catalysts was investigated. Understanding the behavior of each metallocene under different polymerization conditions is necessary for designing combined metallocene catalysts to produce tailor‐made polyolefins. In this article, a simple mathematical model based on experimental results is developed and combined with the bimodality criterion developed in Part I of this series to predict polymerization conditions and metallocene combinations that will produce polymers with desired MWDs and CCDs. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1417–1426, 2000  相似文献   

15.
The effect of type and concentration of external donor and hydrogen concentration on oligomer formation and chain end distribution were studied. Bulk polymerization of propylene was carried out with two different Ziegler‐Natta catalysts at 70 °C, one a novel self‐supported catalyst (A) and the other a conventional MgCl2‐supported catalyst (B) with triethyl aluminum as cocatalyst. The external donors used were dicyclopentyl dimethoxy silane (DCP) and cyclohexylmethyl dimethoxy silane (CHM). The oligomer amount was shown to be strongly dependent on the molecular weight of the polymer. Catalyst A gave approximately 50 % lower oligomer content than catalyst B due to narrower molecular weight distribution in case of catalyst A. More n‐Bu‐terminated chain ends were found for catalyst A indicating more frequent 2,1 insertions. Catalyst A also gave more vinylidene‐terminated oligomers, suggesting that chain transfer to monomer, responsible for the vinylidene chain ends, was a more important chain termination mechanism for this catalyst, especially at low hydrogen concentration. Low site selectivity, due to low external donor concentration or use of a weak external donor (CHM), was also found to increase formation of vinylidene‐terminated oligomers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 351–358, 2010  相似文献   

16.
Ansa‐zirconocene diamide complex rac‐(EBI)Zr(NMe2)2 [rac‐1, EBI = ethylene‐1,2‐bis(1‐indenyl)] reacted with AlR3 (R = Me, Et, iBu) or Al(iBu2)H and then with [CPh3][B(C6F5)4] (2) in toluene in order to perform propylene polymerization by cationic alkylzirconium species, which are in situ generated during polymerization. Through the sequential NMR‐scale reactions of rac‐1 with AlR3 or Al(iBu2)H and then with 2, rac‐1 was demonstrated to be transformed to the active alkyzirconium cations via alkylated intermediates of rac‐1. The cationic species generated by using AlMe3, AlEt3, and Al(iBu2)H as alkylating reagents tend to become heterodinuclear complex; however, those by using bulky Al(iBu)3 become base‐free [rac‐(EBI)Zr(iBu)]+ cations. The activity of propylene polymerization by rac‐1/AlR3/2 catalyst was deeply influenced by various parameters such as the amount and the type of AlR3, metallocene concentration, [Al]/[2] ratio, and polymerization temperature. Generally the catalytic systems using bulky alkylaluminum like Al(iBu)3 and Al(iBu)2H show higher activity but lower stereoregularity than those using less bulky AlMe3 and AlEt3. The alkylating reagent Al(iBu)3 is not a transfer agent as good as AlMe3 or AlEt3. The polymerization activities show maximum around [Al]/[2] ratio of 1.0 and increase monotonously with polymerization temperature. The overall activation energy of both rac‐1/Al(iBu)3/2 and rac‐1/Al(iBu)2H catalysts is 6.0 kcal/mol. As the polymerization temperature increases, the stereoregularity of the resulting polymer decreases markedly, which is demonstrated by the decrease of [mmmm] pentad value and by the increase of the amount of polymer soluble in low boiling solvent. The physical properties of polymers produced in this study were investigated by using 13C‐NMR, differential scanning calorimetry (DSC), viscometry, and gel permeation chromatography (GPC). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1523–1539, 1999  相似文献   

17.
Olefin polymerizations catalyzed by Cp′TiCl2(O‐2,6‐iPr2C6H3) ( 1 – 5 ; Cp′ = cyclopentadienyl group), RuCl2(ethylene)(pybox) { 7 ; pybox = 2,6‐bis[(4S)‐4‐isopropyl‐2‐oxazolin‐2‐yl]pyridine}, and FeCl2(pybox) ( 8 ) were investigated in the presence of a cocatalyst. The Cp*TiCl2(O‐2,6‐iPr2C6H3) ( 5 )–methylaluminoxane (MAO) catalyst exhibited remarkable catalytic activity for both ethylene and 1‐hexene polymerizations, and the effect of the substituents on the cyclopentadienyl group was an important factor for the catalytic activity. A high level of 1‐hexene incorporation and a lower rE · rH value with 5 than with [Me2Si(C5Me4)(NtBu)]TiCl2 ( 6 ) were obtained, despite the rather wide bond angle of Cp Ti O (120.5°) of 5 compared with the bond angle of Cp Ti N of 6 (107.6°). The 7 –MAO catalyst exhibited moderate catalytic activity for ethylene homopolymerization and ethylene/1‐hexene copolymerization, and the resultant copolymer incorporated 1‐hexene. The 8 –MAO catalyst also exhibited activity for ethylene polymerization, and an attempted ethylene/1‐hexene copolymerization gave linear polyethylene. The efficient polymerization of a norbornene macromonomer bearing a ring‐opened poly(norbornene) substituent was accomplished by ringopening metathesis polymerization with the well‐defined Mo(CHCMe2Ph)(N‐2,6‐iPr2C6H3)[OCMe(CF3)2]2 ( 10 ). The key step for the macromonomer synthesis was the exclusive end‐capping of the ring‐opened poly(norbornene) with p‐Me3SiOC6H4CHO, and the use of 10 was effective for this polymerization proceeding with complete conversion. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4613–4626, 2000  相似文献   

18.
The effects of hydrogen in ethylene polymerization and oligomerization with different bis(imino)pyridyl iron(II) complexes immobilized on supports of type MgCl2/AlEtn(OEt)3–n have been investigated. Hydrogen has a significant activating effect on polymerization catalysts containing relatively bulky bis(imino)pyridyl ligands, but this is not the case in ethylene oligomerization with a catalyst containing relatively little steric bulk in the ligand. It was found that the presence of hydrogen in the latter system led to decreased activity and an overall increase rather than a decrease in product molecular weight, indicating deactivation of active species producing low molecular weight polymer and oligomer. Decreased formation of vinyl‐terminated oligomers in the presence of hydrogen can therefore contribute to the activating effect of hydrogen in ethylene polymerization with immobilized iron catalysts, if it is assumed that hydrogen activation is related to chain transfer after a 2,1‐insertion of a vinyl‐terminated oligomer into the growing polymer chain. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4054–4061, 2007  相似文献   

19.
We investigated the catalytic performance of both bridged unsubstituted [rac‐EtInd2ZrMe2, rac‐Me2SiInd2ZrMe2] and 2‐substituted [rac‐Et(2‐MeInd)2ZrMe2), rac‐Me2Si(2‐MeInd)2ZrMe2] dimethylbisindenylzirconocenes activated with triisobutyl aluminum (TIBA) as a single activator in (a) homopolymerizations of ethylene and propylene, (b) copolymerization of ethylene with propylene and hexene‐1, and (c) copolymerization of propylene with hexene‐1 (at AlTIBA/Zr = 100‐300 mol/mol). Unsubstituted catalysts were inactive in homopolymerizations of ethylene and propylene and copolymerization of propylene with hexene‐1 but exhibited high activity in copolymerizations of ethylene with propylene and hexene‐1. 2‐Substituted zirconocenes activated with TIBA were active in homopolymerizations of ethylene and propylene and exhibited high activity in copolymerization of ethylene with propylene and hexene‐1, and in copolymerization of propylene with hexene‐1. Comparative microstructural analysis of ethylene‐propylene copolymers prepared over rac‐Me2SiInd2ZrMe2 activated with TIBA or Me2NHPhB(C6F5)4 has shown that the copolymers formed upon activation with TIBA are statistical in nature with some tendency to alternation, whereas those with borate activated system show a tendency to formation of comonomer blocks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2934–2941, 2010  相似文献   

20.
Vaporization of MgCl2 and other metal halides results in monomeric gas-phase species. Cocondensation of these species with organic diluents such as heptane yields highly activated solids which are precursors to MgCl2 supported “high-mileage” catalysts for olefin polymerization. These catalysts, prepared by treatment with TiCl4 followed by standard activation with aluminum alkyls display high activity for ethylene and propylene polymerization. MgCl2 can also be evaporated into neat TiCl4 to give a related catalyst. The concentration of MgCl2 in the diluent affects catalyst properties as does the nature of the diluent. TiCl3, 3TiCl3 · AlCl3, VCl3 and other metal halides are subject to similar activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号