首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider as in Parts I and II a family of linearly elastic shells of thickness 2?, all having the same middle surfaceS=?(?)?R 3, whereω?R 2 is a bounded and connected open set with a Lipschitz-continuous boundary, and? ∈ ?3 (?;R 3). The shells are clamped on a portion of their lateral face, whose middle line is?(γ 0), whereγ 0 is a portion of withlength γ 0>0. For all?>0, let $\zeta _i^\varepsilon$ denote the covariant components of the displacement $u_i^\varepsilon g^{i,\varepsilon }$ of the points of the shell, obtained by solving the three-dimensional problem; let $\zeta _i^\varepsilon$ denote the covariant components of the displacement $\zeta _i^\varepsilon$ a i of the points of the middle surfaceS, obtained by solving the two-dimensional model ofW.T. Koiter, which consists in finding $$\zeta ^\varepsilon = \left( {\zeta _i^\varepsilon } \right) \in V_K (\omega ) = \left\{ {\eta = (\eta _\iota ) \in {\rm H}^1 (\omega ) \times H^1 (\omega ) \times H^2 (\omega ); \eta _i = \partial _v \eta _3 = 0 on \gamma _0 } \right\}$$ such that $$\begin{gathered} \varepsilon \mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \gamma _{\sigma \tau } (\zeta ^\varepsilon )\gamma _{\alpha \beta } (\eta )\sqrt a dy + \frac{{\varepsilon ^3 }}{3} \mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \rho _{\sigma \tau } (\zeta ^\varepsilon )\rho _{\alpha \beta } (\eta )\sqrt a dy \hfill \\ = \mathop \smallint \limits_\omega p^{i,\varepsilon } \eta _i \sqrt a dy for all \eta = (\eta _i ) \in V_K (\omega ), \hfill \\ \end{gathered}$$ where $a^{\alpha \beta \sigma \tau }$ are the components of the two-dimensional elasticity tensor ofS, $\gamma _{\alpha \beta }$ (η) and $\rho _{\alpha \beta }$ (η) are the components of the linearized change of metric and change of curvature tensors ofS, and $p^{i,\varepsilon }$ are the components of the resultant of the applied forces. Under the same assumptions as in Part I, we show that the fields $\frac{1}{{2_\varepsilon }}\smallint _{ - \varepsilon }^\varepsilon u_i^\varepsilon g^{i,\varepsilon } dx_3^\varepsilon$ and $\zeta _i^\varepsilon$ a i , both defined on the surfaceS, have the same principal part as? → 0, inH 1 (ω) for the tangential components, and inL 2(ω) for the normal component; under the same assumptions as in Part II, we show that the same fields again have the same principal part as? → 0, inH 1 (ω) for all their components. For “membrane” and “flexural” shells, the two-dimensional model ofW.T. Koiter is therefore justified.  相似文献   

2.
We consider a family of linearly elastic shells with thickness 2?, clamped along their entire lateral face, all having the same middle surfaceS=φ() ?R 3, whereω ?R 2 is a bounded and connected open set with a Lipschitz-continuous boundaryγ, andφl 3 ( $\overline \omega$ ;R 3). We make an essential geometrical assumption on the middle surfaceS, which is satisfied ifγ andφ are smooth enough andS is “uniformly elliptic”, in the sense that the two principal radii of curvature are either both>0 at all points ofS, or both<0 at all points ofS. We show that, if the applied body force density isO(1) with respect to?, the fieldtu(?)=(u i(?)), whereu i (?) denote the three covariant components of the displacement of the points of the shell given by the equations of three-dimensional elasticity, one “scaled” so as to be defined over the fixed domain Ω=ω×]?1, 1[, converges inH 1(Ω)×H 1(Ω)×L 2(Ω) as?→0 to a limitu, which is independent of the transverse variable. Furthermore, the averageξ=1/2ε ?1 1 u dx 3, which belongs to the space $$V_M (\omega ) = H_0^1 (\omega ) \times H_0^1 (\omega ) \times L^2 (\omega ),$$ satisfies the (scaled) two-dimensional equations of a “membrane shell” viz., $$\mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \gamma _{\sigma \tau } (\zeta )\gamma _{\alpha \beta } (\eta ) \sqrt \alpha dy = \mathop \smallint \limits_\omega \left\{ {\mathop \smallint \limits_{ - 1}^1 f^i dx_3 } \right\}\eta _i \sqrt a dy$$ for allη=(η i) εV M(ω), where $a^{\alpha \beta \sigma \tau }$ are the components of the two-dimensional elasticity tensor of the surfaceS, $$\gamma _{\alpha \beta } (\eta ) = \frac{1}{2}\left( {\partial _{\alpha \eta \beta } + \partial _{\beta \eta \alpha } } \right) - \Gamma _{\alpha \beta }^\sigma \eta _\sigma - b_{\alpha \beta \eta 3} $$ are the components of the linearized change of metric tensor ofS, $\Gamma _{\alpha \beta }^\sigma$ are the Christoffel symbols ofS, $b_{\alpha \beta }$ are the components of the curvature tensor ofS, andf i are the scaled components of the applied body force. Under the above assumptions, the two-dimensional equations of a “membrane shell” are therefore justified.  相似文献   

3.
Remnant functions are defined, with \(\kappa = \sigma + \tau + \tfrac{1}{2}\) , by $$R_{\sigma \tau } (z) = [{{\Gamma (\sigma - [\kappa ])} \mathord{\left/ {\vphantom {{\Gamma (\sigma - [\kappa ])} {\Gamma (\sigma )}}} \right. \kern-\nulldelimiterspace} {\Gamma (\sigma )}}]\sum\limits_{r = 1}^\infty {r^{2\tau } \left[\kern-0.15em\left[ {(r^2 + z)^{\sigma - 1} } \right]\kern-0.15em\right]_\kappa }$$ where \(\left[\kern-0.15em\left[ \right]\kern-0.15em\right]_\kappa\) denotes subtraction of sufficiently many terms of the Taylor series in powers of z to yield a convergent sum; for integral σ a factor \([1 + ({z \mathord{\left/ {\vphantom {z {r^2 }}} \right. \kern-0em} {r^2 }})]\) may also enter. These functions arise in various contexts, in particular, in the calculation of uniform remainder terms for the approximation by integrals of sums with singular summands. Differential recurrence relations, Taylor expansions, and various integral representations are obtained. The full asymptotic expansions for ¦z¦→∞ with ¦arg z¦ <π are derived, and it is shown that for integral τ these converge exponentially fast.  相似文献   

4.
Let A 1(x, D) and A 2(x, D) be differential operators of the first order acting on l-vector functions ${u= (u_1, \ldots, u_l)}$ in a bounded domain ${\Omega \subset \mathbb{R}^{n}}$ with the smooth boundary ${\partial\Omega}$ . We assume that the H 1-norm ${\|u\|_{H^{1}(\Omega)}}$ is equivalent to ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_1u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ and ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_2u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ , where B i  = B i (x, ν) is the trace operator onto ${\partial\Omega}$ associated with A i (x, D) for i = 1, 2 which is determined by the Stokes integral formula (ν: unit outer normal to ${\partial\Omega}$ ). Furthermore, we impose on A 1 and A 2 a cancellation property such as ${A_1A_2^{\prime}=0}$ and ${A_2A_1^{\prime}=0}$ , where ${A^{\prime}_i}$ is the formal adjoint differential operator of A i (i = 1, 2). Suppose that ${\{u_m\}_{m=1}^{\infty}}$ and ${\{v_m\}_{m=1}^{\infty}}$ converge to u and v weakly in ${L^2(\Omega)}$ , respectively. Assume also that ${\{A_{1}u_m\}_{m=1}^{\infty}}$ and ${\{A_{2}v_{m}\}_{m=1}^{\infty}}$ are bounded in ${L^{2}(\Omega)}$ . If either ${\{B_{1}u_m\}_{m=1}^{\infty}}$ or ${\{B_{2}v_m\}_{m=1}^{\infty}}$ is bounded in ${H^{\frac{1}{2}}(\partial\Omega)}$ , then it holds that ${\int_{\Omega}u_m\cdot v_m \,{\rm d}x \to \int_{\Omega}u\cdot v \,{\rm d}x}$ . We also discuss a corresponding result on compact Riemannian manifolds with boundary.  相似文献   

5.
The main goal of this work is to prove that every non-negative strong solution u(x, t) to the problem $$u_t + (-\Delta)^{\alpha/2}{u} = 0 \,\, {\rm for} (x, t) \in {\mathbb{R}^n} \times (0, T ), \, 0 < \alpha < 2,$$ can be written as $$u(x, t) = \int_{\mathbb{R}^n} P_t (x - y)u(y, 0) dy,$$ where $$P_t (x) = \frac{1}{t^{n/ \alpha}}P \left(\frac{x}{t^{1/ \alpha}}\right),$$ and $$P(x) := \int_{\mathbb{R}^n} e^{i x\cdot\xi-|\xi |^\alpha} d\xi.$$ This result shows uniqueness in the setting of non-negative solutions and extends some classical results for the heat equation by Widder in [15] to the nonlocal diffusion framework.  相似文献   

6.
Consider a bounded domain ${{\Omega \subseteq \mathbb{R}^3}}$ with smooth boundary, some initial value ${{u_0 \in L^2_{\sigma}(\Omega )}}$ , and a weak solution u of the Navier–Stokes system in ${{[0,T) \times\Omega,\,0 < T \le \infty}}$ . Our aim is to develop regularity and uniqueness conditions for u which are based on the Besov space $$B^{q,s}(\Omega ):=\left\{v\in L^2_{\sigma}(\Omega ); \|v\|_{B^{q,s}(\Omega )} := \left(\int\limits^{\infty}_0 \left\|e^{-\tau A}v\right\|^s_q {\rm d} \tau\right)^{1/s}<\infty \right\}$$ with ${{2 < s < \infty,\,3 < q <\infty,\,\frac2{s}+\frac{3}{q} = 1}}$ ; here A denotes the Stokes operator. This space, introduced by Farwig et al. (Ann. Univ. Ferrara 55:89–110, 2009 and J. Math. Fluid Mech. 14: 529–540, 2012), is a subspace of the well known Besov space ${{{\mathbb{B}}^{-2/s}_{q,s}(\Omega )}}$ , see Amann (Nonhomogeneous Navier–Stokes Equations with Integrable Low-Regularity Data. Int. Math. Ser. pp. 1–28. Kluwer/Plenum, New York, 2002). Our main results on the regularity of u exploits a variant of the space ${{B^{q,s}(\Omega )}}$ in which the integral in time has to be considered only on finite intervals (0, δ ) with ${{\delta \to 0}}$ . Further we discuss several criteria for uniqueness and local right-hand regularity, in particular, if u satisfies Serrin’s limit condition ${{u\in L^{\infty}_{\text{loc}}([0,T);L^3_{\sigma}(\Omega ))}}$ . Finally, we obtain a large class of regular weak solutions u defined by a smallness condition ${{\|u_0\|_{B^{q,s}(\Omega )} \le K}}$ with some constant ${{K=K(\Omega, q)>0}}$ .  相似文献   

7.
8.
Transition to turbulence in axially symmetrical laminar pipe flows with periodic time dependence classified as pure oscillating and pulsatile (pulsating) ones is the concern of the paper. The current state of art on the transitional characteristics of pulsatile and oscillating pipe flows is introduced with a particular attention to the utilized terminology and methodology. Transition from laminar to turbulent regime is usually described by the presence of the disturbed flow with small amplitude perturbations followed by the growth of turbulent bursts. The visual treatment of velocity waveforms is therefore a preferred inspection method. The observation of turbulent bursts first in the decelerating phase and covering the whole cycle of oscillation are used to define the critical states of the start and end of transition, respectively. A correlation study referring to the available experimental data of the literature particularly at the start of transition are presented in terms of the governing periodic flow parameters. In this respect critical oscillating and time averaged Reynolds numbers at the start of transition; Re os,crit and Re ta,crit are expressed as a major function of Womersley number, $\sqrt {\omega ^\prime } $ defined as dimensionless frequency of oscillation, f. The correlation study indicates that in oscillating flows, an increase in Re os,crit with increasing magnitudes of $\sqrt {\omega ^\prime } $ is observed in the covered range of $1<\sqrt {\omega ^\prime } <72$ . The proposed equation (Eq. 7), ${\rm{Re}}_{os,crit} ={\rm{Re}}_{os,crit} \left( {\sqrt {\omega ^\prime } } \right)$ , can be utilized to estimate the critical magnitude of $\sqrt {\omega ^\prime }$ at the start of transition with an accuracy of ±12?% in the range of $\sqrt {\omega ^\prime } <41$ . However in pulsatile flows, the influence of $\sqrt {\omega ^\prime }$ on Re ta,crit seems to be different in the ranges of $\sqrt {\omega ^\prime } <8$ and $\sqrt {\omega ^\prime } >8$ . Furthermore there is rather insufficient experimental data in pulsatile flows considering interactive influences of $\sqrt {\omega ^\prime } $ and velocity amplitude ratio, A 1. For the purpose, the measurements conducted at the start of transition of a laminar sinusoidal pulsatile pipe flow test case covering the range of 0.21<?A 1?<0.95 with $\sqrt {\omega ^\prime } <8$ are evaluated. In conformity with the literature, the start of transition corresponds to the observation of first turbulent bursts in the decelerating phase of oscillation. The measured data indicate that increase in $\sqrt {\omega ^\prime } $ is associated with an increase in Re ta,crit up to $\sqrt {\omega ^\prime } =3.85$ while a decrease in Re ta,crit is observed with an increase in $\sqrt {\omega ^\prime } $ for $\sqrt {{\omega }'} >3.85$ . Eventually updated portrait is pointing out the need for further measurements on i) the end of transition both in oscillating and pulsatile flows with the ranges of $\sqrt {\omega ^\prime } <8$ and $\sqrt {\omega ^\prime } >8$ , and ii) the interactive influences of $\sqrt {\omega ^\prime } $ and A 1 on Re ta,crit in pulsatile flows with the range of $\sqrt {\omega ^\prime } >8$ .  相似文献   

9.
10.
We study the energy decay of the turbulent solutions to the Navier–Stokes equations in the whole three-dimensional space. We show as the main result that the solutions with the energy decreasing at the rate \({O(t^{-\alpha}), t \rightarrow \infty, \alpha \in [0, 5/2]}\) , are exactly characterized by their initial conditions belonging into the homogeneous Besov space \({\dot{B}^{-\alpha}_{2, \infty}}\) . Similarly, for a solution u and \({p \in [1, \infty]}\) the integral \({\int_{0}^{\infty} \|t^{\alpha/2} u(t)\|^p \frac{1}{t} dt}\) is finite if and only if the initial condition of u belongs to the homogeneous Besov space \({\dot{B}_{2, p}^{-\alpha}}\) . For the case \({\alpha \in (5/2, 9/2]}\) we present analogical results for some subclasses of turbulent solutions.  相似文献   

11.
In this paper, we prove unique existence of solutions to the generalized resolvent problem of the Stokes operator with first order boundary condition in a general domain ${\Omega}$ of the N-dimensional Eulidean space ${\mathbb{R}^N, N \geq 2}$ . This type of problem arises in the mathematical study of the flow of a viscous incompressible one-phase fluid with free surface. Moreover, we prove uniform estimates of solutions with respect to resolvent parameter ${\lambda}$ varying in a sector ${\Sigma_{\sigma, \lambda_0} = \{\lambda \in \mathbb{C} \mid |\arg \lambda| < \pi-\sigma, \enskip |\lambda| \geq \lambda_0\}}$ , where ${0 < \sigma < \pi/2}$ and ${\lambda_0 \geq 1}$ . The essential assumption of this paper is the existence of a unique solution to a suitable weak Dirichlet problem, namely it is assumed the unique existence of solution ${p \in \hat{W}^1_{q, \Gamma}(\Omega)}$ to the variational problem: ${(\nabla p, \nabla \varphi) = (f, \nabla \varphi)}$ for any ${\varphi \in \hat W^1_{q', \Gamma}(\Omega)}$ . Here, ${1 < q < \infty, q' = q/(q-1), \hat W^1_{q, \Gamma}(\Omega)}$ is the closure of ${W^1_{q, \Gamma}(\Omega) = \{ p \in W^1_q(\Omega) \mid p|_\Gamma = 0\}}$ by the semi-norm ${\|\nabla \cdot \|_{L_q(\Omega)}}$ , and ${\Gamma}$ is the boundary of ${\Omega}$ . In fact, we show that the unique solvability of such a Dirichlet problem is necessary for the unique existence of a solution to the resolvent problem with uniform estimate with respect to resolvent parameter varying in ${(\lambda_0, \infty)}$ . Our assumption is satisfied for any ${q \in (1, \infty)}$ by the following domains: whole space, half space, layer, bounded domains, exterior domains, perturbed half space, perturbed layer, but for a general domain, we do not know any result about the unique existence of solutions to the weak Dirichlet problem except for q =  2.  相似文献   

12.
In this paper, we establish the local well-posedness for the Cauchy problem of a simplified version of hydrodynamic flow of nematic liquid crystals in ${\mathbb{R}^3}$ for any initial data (u 0, d 0) having small ${L^{3}_{\rm uloc}}$ -norm of ${(u_{0}, \nabla d_{0})}$ . Here ${L^{3}_{\rm uloc}(\mathbb{R}^3)}$ is the space of uniformly locally L 3-integrable functions. For any initial data (u 0, d 0) with small ${\|(u_0, \nabla d_0)\|_{L^{3}(\mathbb{R}^3)}}$ , we show that there exists a unique, global solution to the problem under consideration which is smooth for t > 0 and has monotone deceasing L 3-energy for ${t \geqq 0}$ .  相似文献   

13.
Yongxin Yuan  Hao Liu 《Meccanica》2013,48(9):2245-2253
The procedure of updating an existing but inaccurate model is an essential step toward establishing an effective model. Updating damping and stiffness matrices simultaneously with measured modal data can be mathematically formulated as following two problems. Problem 1: Let M a SR n×n be the analytical mass matrix, and Λ=diag{λ 1,…,λ p }∈C p×p , X=[x 1,…,x p ]∈C n×p be the measured eigenvalue and eigenvector matrices, where rank(X)=p, p<n and both Λ and X are closed under complex conjugation in the sense that $\lambda_{2j} = \bar{\lambda}_{2j-1} \in\nobreak{\mathbf{C}} $ , $x_{2j} = \bar{x}_{2j-1} \in{\mathbf{C}}^{n} $ for j=1,…,l, and λ k R, x k R n for k=2l+1,…,p. Find real-valued symmetric matrices D and K such that M a 2+DXΛ+KX=0. Problem 2: Let D a ,K a SR n×n be the analytical damping and stiffness matrices. Find $(\hat{D}, \hat{K}) \in\mathbf{S}_{\mathbf{E}}$ such that $\| \hat{D}-D_{a} \|^{2}+\| \hat{K}-K_{a} \|^{2}= \min_{(D,K) \in \mathbf{S}_{\mathbf{E}}}(\| D-D_{a} \|^{2} +\|K-K_{a} \|^{2})$ , where S E is the solution set of Problem 1 and ∥?∥ is the Frobenius norm. In this paper, a gradient based iterative (GI) algorithm is constructed to solve Problems 1 and 2. A sufficient condition for the convergence of the iterative method is derived and the range of the convergence factor is given to guarantee that the iterative solutions consistently converge to the unique minimum Frobenius norm symmetric solution of Problem 2 when a suitable initial symmetric matrix pair is chosen. The algorithm proposed requires less storage capacity than the existing numerical ones and is numerically reliable as only matrix manipulation is required. Two numerical examples show that the introduced iterative algorithm is quite efficient.  相似文献   

14.
A macromolecular solution is represented by the simple model of rigid dumbbells suspended in a Newtonian fluid with Brownian motion included. Hydrodynamic interaction is not taken into account. It is found that for this model there will be recoil after the cessation of steady shearing flow. The ultimate shear recovery S is developed as a power series in κ?, the shear rate prior to the cessation of the steady shear flow: $$S_\infty = (\theta _0 /2\eta _0 ) \kappa ^\user1{ - } + O(\kappa ^\user1{ - } )^3$$ where η0 and θ0 values of the viscosity and primary normal stress functions respectively at zero-shear rate. The coefficient of the term in (κ?)3 is calculated. In addition, the behavior of the normal stresses during the recoil process is found; during recoil τ2233 has the opposite sign from τ1122.  相似文献   

15.
In this paper, we first prove the global existence of weak solutions to the d-dimensional incompressible inhomogeneous Navier–Stokes equations with initial data ${a_0 \in L^\infty (\mathbb{R}^d), u_0 = (u_0^h, u_0^d) \in \dot{B}^{-1+\frac{d}{p}}_{p, r} (\mathbb{R}^d)}$ , which satisfy ${(\mu \| a_0 \|_{L^\infty} + \|u_0^h\|_{\dot{B}^{-1+\frac{d}{p}}_{p, r}}) {\rm exp}(C_r{\mu^{-2r}}\|u_0^d\|_{\dot{B}^{-1+\frac{d}{p}}_{p,r}}^{2r}) \leqq c_0\mu}$ for some positive constants c 0, C r and 1 < p < d, 1 < r < ∞. The regularity of the initial velocity is critical to the scaling of this system and is general enough to generate non-Lipschitz velocity fields. Furthermore, with additional regularity assumptions on the initial velocity or on the initial density, we can also prove the uniqueness of such a solution. We should mention that the classical maximal L p (L q ) regularity theorem for the heat kernel plays an essential role in this context.  相似文献   

16.
Hydrogels of different composition based on the copolymerization of N-isopropyl acrylamide and surfmers of different chemical structure were tested in elongation using Hencky/real definitions for stress, strain, and strain rate, offering a more scientific insight into the effect of deformation on the properties. In a range between $\dot {\varepsilon }=10$ and 0.01 s $^{-1}$ , the material properties are independent of strain rate and show a very clear strain hardening with a “brittle” sudden fracture. The addition of surfmer increases the strain at break $\varepsilon _{\mathrm {H}}^{\max }$ and at the same time leads to a failure of hyperelastic models. The samples can be stretched up to Hencky strains $\varepsilon _{\mathrm {H}}^{\max }$ between 0.6 and 2.5, depending on the molecular structure, yielding linear Young’s moduli E $_{0}$ between 2,700 and 39,000 Pa. The strain-rate independence indicates an ideal rubberlike behavior and fracture in a brittle-like fashion. The resulting stress at break $\sigma _{\textrm max}$ can be correlated with $\varepsilon _{\mathrm {H}}^{\max } $ and $E_{0}$ as well as with the solid molar mass between the cross-linking points $M_{\mathrm {c}}^{\textrm {solids}} $ , derived from $E_{0}$ .  相似文献   

17.
The integrability theory for the differential equations, which describe the motion of an unconstrained rigid body around a fixed point is well known. When there are constraints the theory of integrability is incomplete. The main objective of this paper is to analyze the integrability of the equations of motion of a constrained rigid body around a fixed point in a force field with potential U(γ)=U(γ 1,γ 2,γ 3). This motion subject to the constraint 〈ν,ω〉=0 with ν is a constant vector is known as the Suslov problem, and when ν=γ is the known Veselova problem, here ω=(ω 1,ω 2,ω 3) is the angular velocity and 〈?,?〉 is the inner product of $\mathbb{R}^{3}$ . We provide the following new integrable cases. (i) The Suslov’s problem is integrable under the assumption that ν is an eigenvector of the inertial tensor I and the potential is such that $$U=-\frac{1}{2I_1I_2}\bigl(I_1\mu^2_1+I_2 \mu^2_2\bigr), $$ where I 1,I 2, and I 3 are the principal moments of inertia of the body, μ 1 and μ 2 are solutions of the first-order partial differential equation $$\gamma_3 \biggl(\frac{\partial\mu_1}{\partial\gamma_2}- \frac{\partial\mu_2}{\partial \gamma_1} \biggr)- \gamma_2\frac{\partial \mu_1}{\partial\gamma_3}+\gamma_1\frac{\partial\mu_2}{\partial \gamma_3}=0. $$ (ii) The Veselova problem is integrable for the potential $$U=-\frac{\varPsi^2_1+\varPsi^2_2}{2(I_1\gamma^2_2+I_2\gamma^2_1)}, $$ where Ψ 1 and Ψ 2 are the solutions of the first-order partial differential equation where $p=\sqrt{I_{1}I_{2}I_{3} (\frac{\gamma^{2}_{1}}{I_{1}}+\frac{\gamma^{2}_{2}}{I_{2}}+ \frac{\gamma^{2}_{3}}{I_{3}} )}$ . Also it is integrable when the potential U is a solution of the second-order partial differential equation where $\tau_{2}=I_{1}\gamma^{2}_{1}+I_{2}\gamma^{2}_{2}+I_{3}\gamma^{2}_{3}$ and $\tau_{3}=\frac{\gamma^{2}_{1}}{I_{1}}+\frac{\gamma^{2}_{2}}{I_{2}}+ \frac{\gamma^{2}_{3}}{I_{3}}$ . Moreover, we show that these integrable cases contain as a particular case the previous known results.  相似文献   

18.
We study the statistics of the vertical motion of inertial particles in strongly stratified turbulence. We use Kinematic Simulation (KS) and Rapid Distortion Theory (RDT) to study the mean position and the root mean square (rms) of the position fluctuation in the vertical direction. We vary the strength of the stratification and the particle inertial characteristic time. The stratification is modelled using the Boussinesq equation and solved in the limit of RDT. The validity of the approximations used here requires that $ \sqrt{{L}/{g}} < {2\pi}/{\mathcal{N}} < \tau_{\eta} $ , where τ η is the Kolmogorov time scale, g the gravitational acceleration, L the turbulence integral length scale and $\mathcal{N}$ the Brunt–Väisälä frequency. We introduce a drift Froude number $Fr_{d} = \tau_p g / \mathcal{N} L$ . When Fr d ?<?1, the rms of the inertial particle displacement fluctuation is the same as for fluid elements, i.e. $\langle(\zeta_3 - \langle \zeta_3 \rangle)^2\rangle^{1/2} = 1.22\, u'/\mathcal{N} + \mbox{oscillations}$ . However, when Fr d ?>?1, $\langle(\zeta_3 - \langle \zeta_3 \rangle)^2\rangle^{1/2} = 267 \, u' \tau_p$ . That is the level of the fluctuation is controlled by the particle inertia τ p and not by the buoyancy frequency $\mathcal{N}$ . In other words it seems possible for inertial particles to retain the vertical capping while loosing the memory of the Brunt–Väisälä frequency.  相似文献   

19.
Three-dimensional Direct Numerical Simulations of statistically planar turbulent stratified flames at global equivalence ratios <???>?=?0.7 and <???>?=?1.0 have been carried out to analyse the statistical behaviour of the transport of co-variance of the fuel mass fraction Y F and mixture fraction ξ (i.e. $\widetilde{Y_F^{\prime\prime} \xi ^{\prime\prime}}={\overline {\rho Y_F^{\prime\prime} \xi^{\prime\prime}} } \Big/ {\overline \rho })$ for Reynolds Averaged Navier Stokes simulations where $\overline q $ , $\tilde{q} ={\overline {\rho q} } \big/ {\overline \rho }$ and $q^{\prime\prime}= q-\tilde{q}$ are Reynolds averaged, Favre mean and Favre fluctuation of a general quantity q with ρ being the gas density and the overbar suggesting a Reynolds averaging operation. It has been found that existing algebraic expressions may not capture the statistical behaviour of $\widetilde{Y_F^{\prime\prime} \xi^{\prime\prime}}$ with sufficient accuracy in low Damköhler number combustion and therefore, a transport equation for $\widetilde{Y_F^{\prime\prime} \xi^{\prime\prime}}$ may need to be solved. The statistical behaviours of $\widetilde{Y_F^{\prime\prime} \xi^{\prime\prime}}$ and the unclosed terms of its transport equation (i.e. the terms originating from turbulent transport T 1 , reaction rate T 4 and molecular dissipation $\left( {-D_2 } \right))$ have been analysed in detail. The contribution of T 1 remains important for all cases considered here. The term T 4 acts as a major contributor in <???>?=?1.0 cases, but plays a relatively less important role in <???>?=?0.7 cases, whereas the term $\left( {-D_2 } \right)$ acts mostly as a leading order sink. Through an a-priori DNS analysis, the performances of the models for T 1 , T 4 and $\left( {-D_2 } \right)$ have been addressed in detail. A model has been identified for the turbulent transport term T 1 which satisfactorily predicts the corresponding term obtained from DNS data. The models for T 4 , which were originally proposed for high Damköhler number flames, have been modified for low Damköhler combustion. Predictions of the modified models are found to be in good agreement with T 4 obtained from DNS data. It has been found that existing algebraic models for $D_2 =2\overline {\rho D\nabla Y_F^{\prime\prime} \nabla \xi^{\prime\prime}} $ (where D is the mass diffusivity) are not sufficient for low Damköhler number combustion and therefore, a transport equation may need to be solved for the cross-scalar dissipation rate $\widetilde{\varepsilon }_{Y\xi } ={\overline {\rho D\nabla Y_F^{\prime\prime} \nabla \xi^{\prime\prime}} } \big/ {\overline \rho }$ for the closure of the $\widetilde{Y_F^{\prime\prime} \xi^{\prime\prime}}$ transport equation.  相似文献   

20.
In this paper we establish the square integrability of the nonnegative hydrostatic pressure p, that emerges in the minimization problem $$\inf_{\mathcal{K}}\int_{\varOmega}|\nabla \textbf {v}|^2, \quad\varOmega\subset \mathbb {R}^2 $$ as the Lagrange multiplier corresponding to the incompressibility constraint det?v=1 a.e. in Ω. Our method employs the Euler-Lagrange equation for the mollified Cauchy stress C satisfied in the image domain Ω ?=u(Ω). This allows to construct a convex function ψ, defined in the image domain, such that the measure of the normal mapping of ψ controls the L 2 norm of the pressure. As a by-product we conclude that $\textbf {u}\in C^{\frac{1}{2}}_{\textrm {loc}}(\varOmega)$ if the dual pressure (introduced in Karakhanyan, Manuscr. Math. 138:463, 2012) is nonnegative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号