首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

NPK was applied to a Haynie, very fine, sandy loam as 89.6 MT/ha (40 T/ac) of OF (organic fertilizer as feedlot manure at 45% water content) and as MF (mineral fertilizer) with nutrients equivalent to the manure during 18 months.

Organic fertilizer increased soil organic matter content 0.25% more than the MF and 0.2% more than the control. Organic fertilizer increased the CEC 0.3 m.e./100 g more than the MF and 0.4 m.e./100 g more than the control. Organic fertilizer increased exch. Mg by 32 kg/ha while MF decreased exch. Mg slightly.  相似文献   

2.
Soils receiving organic manures with and without chemical fertilizers for the last 7 yr with pearlmillet–wheat cropping sequence were compared for soil chemical and biological properties. The application of farmyard manure, poultry manure, and sugarcane filter cake alone or in combination with chemical fertilizers improved the soil organic C, total N, P, and K status. The increase in soil microbial‐biomass C and N was observed in soils receiving organic manures only or with the combined application of organic manures and chemical fertilizers compared to soils receiving chemical fertilizers only. Basal and glucose‐induced respiration, potentially mineralizable N, and arginine ammonification were higher in soils amended with organic manures with or without chemical fertilizers, indicating that more active microflora is associated with organic and integrated system using organic manures and chemical fertilizers together which is important for nutrient cycling.  相似文献   

3.
Abstract

The influence of farmyard manure (FYM) and equivalent mineral NPK application on organic matter content, hot water extractable carbon (HWC), microbial biomass C (Cmic), and grain yields in a long-term field experiment was assessed after 40 years in Hungary. The unfertilized plot, FYM fertilized plots and plots fertilized with equivalent NPK fertilizer contained 0.99%, 1.13% and 1.05% total organic carbon (TOC) respectively. Compared to the unfertilized plot, FYM application resulted in 8.2% higher TOC than equivalent NPK fertilization. The highest TOC was only 1.21%, much lower than expected for a soil containing 21.3% of clay. The quantity of HWC varied depending on the type of fertilization: Compared to control, FYM treatments lead to 29% more HWC than mineral fertilization (FYM: 328 mg kg?1; NPK: 264 mg kg?1). The impact of FYM and equivalent NPK fertilizer on Cmic was contrary. FYM and NPK resulted in 304 and 423 mg kg?1 Cmic, respectively. The difference was 119 mg kg?1; 42% as compared to the unfertilized plot. Despite the higher HWC content, FYM treatments lead to significantly less (35%) grain yields than equivalent NPK doses; Cmic content showed closer correlation to grain yields.  相似文献   

4.
 Soil organic matter level, mineralizable C and N, microbial biomass C and dehydrogenase, urease and alkaline phosphatase activities were studied in soils from a field experiment under a pearl millet-wheat cropping sequence receiving inorganic fertilizers and a combination of inorganic fertilizers and organic amendments for the last 11 years. The amounts of soil organic matter and mineralizable C and N increased with the application of inorganic fertilizers. However, there were greater increases of these parameters when farmyard manure, wheat straw or Sesbania bispinosa green manure was applied along with inorganic fertilizers. Microbial biomass C increased from 147 mg kg–1 soil in unfertilized soil to 423 mg kg–1 soil in soil amended with wheat straw and inorganic fertilizers. The urease and alkaline phosphatase activities of soils increased significantly with a combination of inorganic fertilizers and organic amendments. The results indicate that soil organic matter level and soil microbial activities, vital for the nutrient turnover and long-term productivity of the soil, are enhanced by use of organic amendments along with inorganic fertilizers. Received: 6 May 1998  相似文献   

5.
Soil aggregation is of great importance in agriculture due to its positive effect on soil physical properties, plant growth and the environment. A long-term (1996-2008) field experiment was performed to investigate the role of mycorrhizal inoculation and organic fertilizers on some of soil properties of Mediterranean soils (Typic Xerofluvent, Menzilat clay-loam soil). We applied a rotation with winter wheat (Triticum aestivum L.) and maize (Zea mays L.) as a second crop during the periods of 1996 and 2008. The study consisted of five experimental treatments; control, mineral fertilizer (300-60-150 kg N-P-K ha−1), manure at 25 t ha−1, compost at 25 t ha−1 and mycorrhiza-inoculated compost at 10 t ha−1 with three replicates. The highest organic matter content both at 0-15 cm and 15-30 cm soil depths were obtained with manure application, whereas mineral fertilizer application had no effect on organic matter accumulation. Manure, compost and mycorrhizal inoculation + compost application had 69%, 32% and 24% higher organic matter contents at 0-30 cm depth as compared to the control application. Organic applications had varying and important effects on aggregation indexes of soils. The greatest mean weight diameters (MWD) at 15-30 cm depth were obtained with manure, mycorrhiza-inoculated compost and compost applications, respectively. The decline in organic matter content of soils in control plots lead disintegration of aggregates demonstrated on significantly lower MWD values. The compost application resulted in occurring the lowest bulk densities at 0-15 and 15-30 cm soil depths, whereas the highest bulk density values were obtained with mineral fertilizer application. Measurements obtained in 2008 indicated that manure and compost applications did not cause any further increase in MWD at manure and compost receiving plots indicated reaching a steady state. However, compost with mycorrhizae application continued to significant increase (P < 0.05) in MWD values of soils. Organic applications significantly lowered the soil bulk density and penetration resistance. The lowest penetration resistance (PR) at 0-50 cm soil depth was obtained with mycorrhizal inoculated compost, and the highest PR was with control and mineral fertilizer applications. The results clearly revealed that mycorrhiza application along with organic fertilizers resulted in decreased bulk density and penetration resistance associated with an increase in organic matter and greater aggregate stability, indicated an improvement in soil structure.  相似文献   

6.

Purpose

Soil organic matter (SOM) plays an important role in terrestrial ecosystems and agroecosystems. Changes in the agricultural sector in the Czech Republic within the past 25 years have had a negative impact on SOM content and contribute to gradual soil degradation. The aim of this study is to estimate the effect of long-term application of different mineral fertilizers (NPK) and organic manures (manure, cattle slurry) on soil chemical properties (quality of humus, available nutrients, and soil reaction).

Materials and methods

Soil samples were collected from Luvisol during two selected periods 1994–2003 and 2014–2016 from long-term field experiment carried out in Prague-Ruzyně (Czech Republic). Average annual temperature is 8.5 °C, and annual precipitations are 485 mm. Different fertilization regimes have been applied for 62 years. The crop rotation was as follows: cereals (45%), root crops (33%) and legumes (22%). Soil analysis—soil organic carbon (SOC) was determined by oxidimetric titration method. Short fractionation method for evaluation of humic substance (HS), humic acid (HA) and fulvic acid (FA) content was used. Absorbance of HS in UV-VIS spectral range was measured by Varian Carry 50 Probe UV-VIS spectrometer. Degree of humification (DH) and color index (Q4/6) were calculated from fractional composition data. Soil reaction was measured by potentiometric method. Available nutrients (phosphorus, potassium, magnesium, calcium) were determined by Mehlich II and Mehlich I methods and by ICP-OES. For data analysis, the following are used: exploratory data analysis, ANOVA, and principal component analysis (PCA).

Results and discussion

PCA analysis differentiated fertilizers into two categories: (1) variant NPK (lower quality of humus)—higher acidity, lower SOC and HS content, predomination of FA, higher DH and lower content of available nutrients; (2) variants with organic manures (higher quality of humus)—lower acidity, higher SOC and HS content, predomination of HA, middle DH, and high content of available nutrients. The main result of presented study is to give a synthesis of effect of different type of fertilizers on a sustainable organic matter management in arable soils, with respect to yields, food security and adaptation to predict climate changes.

Conclusions

Long-term application of mineral fertilizers (NPK) without organic matter input can accelerate humus mineralization and soil quality degradation with all negative consequences such as (nitrogen leaching, higher availability of toxic element for plants, slow energy for soil microorganisms etc.). Application of organic fertilizers (manure and cattle slurry) helps to achieve the long-term stable yields while maintaining soil at optimum quality (long-term sustainable management with SOM). Principal component analysis is a useful tool for evaluation of soil quality changes.
  相似文献   

7.
The effects of municipal food waste compost addition and mineral fertilization on selected soil microbiological activities were investigated during 3 years of reiterated treatments on two Mediterranean agricultural soils with different organic carbon content. Compost at 15, 30 and 45 t ha−1 (dry matter), mineral (NPK) fertilizers and combined fertilizers with 15 t ha−1 of compost plus two reduced doses of mineral N were applied to both soils. At both sites, organic amendment increased soil respiration, fluorescein diacetate hydrolysis, phosphatase and arylsulphatase activities. The differences in soil microbial activities among treatments, found after 3 years of repeated treatments, were attributable to the variations of soil organic C content and to the impact of soil tillage. Our results show that, in Mediterranean intensively cultivated agroecosystems, annual organic amendments improve the microbial activity of soil and produce cumulative effects, suggesting the usefulness of repeated high-rate compost applications.  相似文献   

8.
A 2-year field experiment was conducted in wheat ecosystem to assess the key soil biological characteristics in inceptisols of northeastern region of India. Nine treatments using organic inputs (farmyard manure and vermicompost) and mineral fertilizers were applied by modulating the doses of organics and mineral N fertilizer. Soil enzymes (urease, phosphatase, dehydrogenase, fluorescein diacetate (FDA) and arylsulphatase), microbial biomass carbon (MBC), bacteria and fungi populations were measured before seed sowing (GS1), at flowering stage (GS2) and after harvest (GS3) of wheat, whereas total organic carbon (TOC) was studied at GS3. GS2 recorded significantly higher soil enzyme activities, except FDA, which increased considerably at GS3. Enzyme activities, available N and TOC significantly (p ≤ 0.05) enhanced with application of organic inputs even with reduced (50%) mineral N. Except urease and phosphatase, other enzymes did not respond significantly to mineral fertilization. Vermicompost application increased mean enzyme activities, MBC, microbial growth and TOC fractions (particulate organic carbon, humic acid and fulvic acid carbon) than farmyard manure. Significant (p ≤ 0.05) positive correlations (r = 0.61–0.87) were obtained between TOC and its fractions with studied soil enzymes. Thus, in conclusion, 5 t ha1 organics incorporation (especially vermicompost) in wheat fertility programme can uphold soil biological health, reduce (50%) N application and would be a sustainable option for wheat grown in inceptisols of northeastern region of India.  相似文献   

9.
Abstract. Knowledge of changes in soil organic matter (SOM) fractions resulting from agricultural practice is important for decision‐making at farm level because of the contrasting effects of different SOM fractions on soils. A long‐term trial sited under Sudano‐Sahelian conditions was used to assess the effect of organic and inorganic fertilization on SOM fractions and sorghum performance. Sorghum straw and kraal manure were applied annually at 10 t ha?1, with and without urea at 60 kg N ha?1. The other treatments included fallowing, a control (no fertilization), and inorganic fertilization only (urea, 60 kg N ha?1). Fallowing gave significantly larger soil organic carbon and nitrogen (N) levels than any other treatment. Total soil SOM and N concentrations increased in the following order: urea only < straw < control < straw+urea < manure with or without urea < fallow. Farming had an adverse effect on SOM and N status; however, this mostly affected the fraction of SOM >0.053 mm (particulate organic matter, POM). The POM concentrations in the control, straw and urea‐only treatments were about one‐half of the POM concentrations in the fallow treatment. POM concentrations increased in the following order: urea only < control < straw with or without urea < manure with or without urea < fallow. The fraction of SOM <0.053 mm (fine organic matter, FOM) was greater than POM in all plots except in fallow and manure+urea plots. Total N concentration followed the same trend as SOM, but cultivation led to a decline in both POM‐N and FOM‐N. Crop yield was greatest in the manure plots and lowest in the straw, control and urea‐only plots. Results indicate that under Sudano‐Sahelian conditions, SOM, POM and FOM fractions and crop performance were better maintained using organic materials with a low C/N ratio (manure) than with organic material with a high C/N ratio (straw). Urea improved the effect of straw on crop yield and SOM concentration.  相似文献   

10.
本文以中国农业科学院山东禹城长期定位施肥试验为平台,研究了长期施用有机肥和化肥26年后对土壤活性氮库不同组分[颗粒有机氮(POM-N)、 可溶性有机氮(DON)、 微生物量氮(SMBN)及轻组有机氮(LFOM-N)]及土壤酶活性的影响。结果表明,与不施肥相比,长期施肥显著提高了土壤全氮、 颗粒有机氮、 可溶性有机氮、 微生物量氮以及轻组有机氮的含量,长期施有机肥效果好于化肥,施用高量有机肥效果好于施用常量有机肥。常量施用量下,50%有机肥和50%化肥配施处理其土壤全氮和活性有机氮库各组分含量与高量化肥处理的相当。长期施化肥处理土壤全氮及活性有机氮库各组分含量随施肥量的增加而显著增高。POM-N对土壤全氮的贡献率最高,且明显受施肥方式的影响,LFOM-N对土壤全氮的贡献率不随施肥方式的改变而变化。长期施肥处理土壤脲酶、 碱性磷酸酶和蔗糖酶活性显著增加,它们之间及与土壤全氮、 速效磷及有机碳含量间呈现显著或极显著相关性,脲酶活性与土壤各活性氮组分间也存在显著或极显著相关性; 但长期施肥后土壤过氧化氢酶的活性低于不施肥  相似文献   

11.
The effect of different treatments on the fate of applied P was investigated in a long-term field experiment started in 1972–1973 following a maize–wheat sequence. The soil samples were collected after 29 years of continuous addition of mineral fertilizers and amendments such as farmyard manure (FYM) and lime. The total P content of all the treatments increased compared to the original soil; NaOH-inorganic P (Pi) (NaOH-Pi) representing Fe and Al-bound P was the dominant Pi fraction. At the beginning of the experiment (1972–1973), the various P pools could be quantitatively ranked in the following order: residual P>NaOH-organic P (Po)>NaOH-Pi>NaHCO3-Po>NaHCO3-Pi>HCl-P>H2O-P. As a result of continued P fertilization and cropping, the order changed as follows: residual P>NaOH-Pi>NaOH-Po>NaHCO3-Pi>NaHCO3-Po>HCl-P>H2O-P. Compared to the imbalanced mineral fertilizer application, the balanced as well as integrated application of nutrients resulted in significantly lower P adsorption capacity of soils. The Olsen extractable-P fraction (plant-available P) increased from about 12 mg kg–1 soil in 1972 to about 81 mg kg–1 soil in the treatments receiving P for the last 29 years.  相似文献   

12.
The biotite changes in the 1–5 μm fraction after its occurrence in the F, H, AE, and E horizons of a pale-podzolic soil for five years under conditions of a model field experiment were assessed by X-ray diffraction analysis. It was found that the main changes of the biotite in all the horizons included the degradational transformation of its crystal lattice to interstratified mica-vermiculite structures and vermiculite. The intensity of this process gradually decreased from the F horizon down the profile in parallel with the decrease in the amount of roots and the abundance and activity of microbiota. Chloritized structures were present among the products of the biotite weathering in the H, AE, and E horizons; the degree of chloritization gradually increased from the H horizon to the E horizon. The main identified products of the biotite weathering in the AE and E horizons formed during the 5 years of the model experiment were identified in the clay and fine-silt fractions from these horizons of the native pale-podzolic soils. Therefore, the vermiculite, soil chlorite, and mixed-layer illite-vermiculite minerals in the soils studied could be considered as products of the recent soil functioning. The obtained results and literature data showed that the weathering of biotite resulted in the formation of K- and Al-buffer systems.  相似文献   

13.
In recent years, organic agriculture has been receiving greater attention because of the various problems like deterioration in soil health and environmental quality under conventional chemical‐intensive agriculture. However, little information is available on the comparative study related to the impact of use of mineral fertilizers and organic manures on the soil quality and productivity. A long‐term field experiment was initiated in 2001 to monitor some of the important soil‐quality parameters and productivity under soybean–wheat crop rotation. The treatments consisted of 0, 30, and 45 kg N ha–1 for soybean and of 0, 120, and 180 kg N ha–1 for wheat. The entire amount of N was supplied to both the crops through urea and farmyard manure (FYM) alone or in combination at 1:1 ratio. Results indicated that Walkley‐and‐Black C (WBC; chromic acid–oxidizable) exhibited a marginal increase under only organic treatments as compared to control treatment (without fertilizers and manure) after completion of five cropping cycles. In case of labile‐C (KMnO4‐oxidizable) content in soil, relatively larger positive changes were recorded under organic, mixed inputs (integrated) and mineral fertilizers as compared to WBC. Maximum improvement in the values of C‐management index (CMI), a measure of soil quality was recorded under organic (348–362), followed by mixed inputs (268–322) and mineral fertilizers (198–199) as compared to the control treatment after completion of five cropping cycles. Similarly there was a substantial increase in KCl‐extractable N; in Olsen‐P; as well as in DTPA‐extractable Zn, Fe, and Mn under organic treatments. Although labile soil C positively contributed to the available N, P, K, Zn, Fe, and Mn contents in soil, it did not show any relationship with the grain yield of wheat. After completion of the sixth cropping cycle, organic treatments produced 23% and 39% lower grain yield of wheat as compared to that under urea‐treated plots. Relatively higher amount of mineral N in soil at critical growth stages and elevated N content in plant under mineral‐fertilizer treatments compared to FYM treatments were responsible for higher yield of wheat under mineral fertilizers.  相似文献   

14.
Changes in bentonite were estimated after having kept it in hor. T2, H, Eih, and E of peaty-podzolic-gleyish (PPG) soil for 1, 3, and 5 years as part of a model field experiment. In the first variant, when montmorillonite is heated at 350°C, its X-ray patterns demonstrate a diffuse scattering (1.0–1.4 nm), which is probably due to the formation of the brucite layer fragments in the interpacket gaps at the expense of magnesium in the initial crystal lattice. When kept in the organogenic layers of soil for 3 and 5 years, it develops a considerable amount of the mineral, which does not swell after being saturated with glycerine. The diffuse scattering at 1.0–1.4 nm disappears after heating at 350°C, but the reflex at 1.0 nm during this treatment remains asymmetric with a gentle sloping towards the smaller angles θ. It can be explained by the partial dilution of the brucite fragments, which developed in the first year, under the conditions of an acidic medium. The changes in the diffraction pattern of hor. Eih, which took place over 1, 3, and 5 years, were similar to those in the organogenic horizons. They were caused by the same reasons as in the organogenic horizons. In the former case, however, thermodynamic measurements allow for the formation of aluminum hydroxide interlayers in the interpocket gaps of montmorillonite as its hydrocomplexes come from the superficial solution. In hor. E, changes in montmorillonite as a result of being kept in soil were marked only by the signs of early chloritization in the sample, which was kept in the soil for 5 years.  相似文献   

15.
Changes in biotite (fraction 1–5 μm) after exposure in the T2, H, Eih, and E horizons of peatypodzolic gleyic soil under conditions of a model field experiment were studied by X-ray diffraction. It was found that the main transformations of the biotite in all horizons included the degradation of its crystal lattice into regularly interstratified biotite-vermiculite and randomly interstratified biotite-smectite structures and vermiculite. The transformation intensity decreased down the profile simultaneously with a reduction in the content of organic matter, roots, and microbiota population and activity. Chloritized structures were also present among the biotite weathering products in the E horizon. The main identified products of biotite weathering formed in horizons Eih and E over a five-year period of the model experiment were detected in the clay and fine silt fractions of these horizons and in native peaty-podzolic gleyic soils. This suggests that vermiculite and soil chlorite in the soils studied are products of soil functioning. It follows from the results, with consideration for literature data, that the weathering of biotite results in the formation of a potassium-buffering system.  相似文献   

16.
The effect of several cycles of varying length of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and loss of added and native nitrogen was investigated under laboratory conditions in flooded soil incubated for 128 days. Redox potential decreased rapidly when air was replaced with argon for the short-time cycles, but decreased more slowly where the aerobic period was long enough to permit build-up of nitrate. The minimum redox potential reached during the anaerobic period was generally lower for the longer cycles, but in all cases was low enough for denitrification to occur. Rate of decomposition of organic matter was faster in the treatments with a greater number of alternate aerobic and anaerobic periods. Total N (native and applied) losses as high as 24.3 per cent occurred in the treatment with the maximum number of cycles and with alternate aerobic and anaerobic periods of 2 and 2 days. Increasing the durations of the aerobic-anaerobic periods decreased the loss of N. A maximum loss of 63.0 per cent of applied 15NH4-N resulted from the shortest (2 and 2 day) aerobic and anaerobic incubation. For soil undergoing frequent changes in aeration status the only labelled N that remained at the end of incubation was found in the organic fraction. Loss of N may have been even greater if labelled inorganic N had not been immobilized by microorganisms decomposing the added rice straw. The greater loss of N resulting from the 2 and 2 day aerobic-anaerobic incubation shows that, in soils where the redox potential falls low enough for denitrification to occur, increasing the frequency of changing from aerobic to anaerobic conditions will increase the loss of N.  相似文献   

17.
The interaction of different ameliorants and fertilizers with the solid phase of clayey vertic chernozems was studied in a model experiment. Changes in the organization and properties of the mineral mass from the plow horizon under the impact of ameliorants took place at several hierarchical levels. At the level of soil aggregates, both the disaggregation of the soil mass and the formation of agronomically valuable soil aggregates under the impact of different ameliorants were observed. The method of fractional peptization of the soil mass was applied to study the behavior of clay minerals. The specificity of the crystallochemistry of smectitic minerals and their changes under the impact of introduced substances were studied in different fractions of clay.  相似文献   

18.
有机-无机肥配施对水稻产量、品质及氮素吸收的影响   总被引:20,自引:7,他引:20  
通过田间试验,研究氮施用量相同的条件下,有机肥和化肥不同比例(有机肥氮分别占100%、70%、40%、20%和0%),对早稻、晚稻及单季稻施用对水稻产量、品质和氮素吸收的影响。结果表明,有机肥氮为40%、20%、40%时,早稻、晚稻和单季稻产量最高,分别比单施化肥区增8.5%、2.8%和4.6%。有机肥氮在20%~40%之间,稻米品质较佳,比例过高则稻米易碎、垩白上升和蛋白质含量下降。有机肥氮为20%水稻氮素累积量最高,有利于氮素的吸收、利用。  相似文献   

19.
The aim of this study was to determine the effects of mineral and organic-P-fertilizers on soil P availability, bacteria densities and phosphatase activities, in a degraded Mediterranean soil characterized by low level in soil organic matter and nutrients. A typical degraded Mediterranean soil, originating from a siliceous mineral parent material, was amended with different organic or mineral P-sources: aerobically digested sewage sludge (SS), with or without physico-chemical treatment by ferric chloride; sewage sludge compost (SSC); Na or K mineral P-salts (Pi-salts). All the amendments were carried out in order to provide soil with a P total quantity equivalent to 0.5 g P2O5/kg of soil. Bacterial density, phosphatase activities (i.e. acid (APH) and alkaline (BPH) phosphomonoesterases and phosphodiesterases), BPH/APH ratio, and available P (P Olsen) were measured after 25 and 87 days of incubation. Results showed that all the P-sources used to fertilize soil during this study resulted in significant increase in P concentration. However, different responses in phosphatase activities and bacterial densities were obtained with regards to the amendment applied to soil. Indeed, it appeared clearly that sewage sludge (SS) considerably stimulated soil biological activity, and more especially the different kinds of phosphatases involved in P mineralization and P turn-over. On the contrary, sewage sludge compost (SSC) as well as P-salts amendments did not affected these parameters in most cases. Results showed also that the incubation time influenced almost all the biological and chemical parameters investigated during this study. As a consequence, P availability was considerably improved in the amended soils between the two sampling dates.  相似文献   

20.
长期施用化肥和有机肥对土壤有机碳和容重的影响   总被引:7,自引:2,他引:7  
在长期定位试验的基础上,探讨了施用化肥和作物秸秆对土体土壤容重和有机碳空间变异的影响.研究结果表明,化肥的施用不仅影响耕层肥力性状,而且会使耕层以下的土壤容重降低和有机碳增加,从而立体地促进土壤肥力的提高,而施用秸秆则只能改善耕层范围的土壤肥力.不同施肥措施造成土壤肥力性状的立体差异主要是由于不同施肥对作物生长和土壤根系的影响差别造成的.化肥对土壤根系的促进作用要比作物秸秆大许多倍,从而使耕层以下有大量残根分布,这些残根促进了深层土壤容重的降低和有机碳的提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号