首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inductive expression of early growth response 1 (Egr-1) in neurons is associated with many forms of neuronal activity. However, only a few Egr-1 target genes are known in the brain. The results of this study demonstrate that Egr-1 knockout (KO) mice display impaired contextual extinction learning and normal fear acquisition relative to wild-type (WT) control animals. Genome-wide microarray experiments revealed 368 differentially expressed genes in the hippocampus of Egr-1 WT exposed to different phases of a fear conditioning paradigm compared to gene expression profiles in the hippocampus of KO mice. Some of genes, such as serotonin receptor 2C (Htr2c), neuropeptide B (Npb), neuronal PAS domain protein 4 (Npas4), NPY receptor Y1 (Npy1r), fatty acid binding protein 7 (Fabp7), and neuropeptide Y (Npy) are known to regulate processing of fearful memories, and promoter analyses demonstrated that several of these genes contained Egr-1 binding sites. This study provides a useful list of potential Egr-1 target genes which may be regulated during fear memory processing.  相似文献   

2.
The optogenetic manipulation of light-activated ion-channels/pumps (i.e., opsins) can reversibly activate or suppress neuronal activity with precise temporal control. Therefore, optogenetic techniques hold great potential to establish causal relationships between specific neuronal circuits and their function in freely moving animals. Due to the critical role of the hippocampal CA1 region in memory function, we explored the possibility of targeting an inhibitory opsin, ArchT, to CA1 pyramidal neurons in mice. We established a transgenic mouse line in which tetracycline trans-activator induces ArchT expression. By crossing this line with a CaMKIIα-tTA transgenic line, the delivery of light via an implanted optrode inhibits the activity of excitatory CA1 neurons. We found that light delivery to the hippocampus inhibited the recall of a contextual fear memory. Our results demonstrate that this optogenetic mouse line can be used to investigate the neuronal circuits underlying behavior.  相似文献   

3.
4.
5.
Cyclin-dependent kinase 5 (Cdk5) plays a pivotal role in neuronal migration and differentiation, and in axonal elongation. Although many studies have been conducted to analyze neuronal functions of Cdk5, its kinase activity has also been reported during oligodendrocyte differentiation, which suggests Cdk5 may play an important role in oligodendrocytes. Here, we describe a hypomyelination phenotype observed in Emx1-cre mediated Cdk5 conditional knockout (cKO) mice (Emx1-cKO), in which the Cdk5 gene was deleted in neurons, astrocytes and oligodendrocyte -lineage cells. In contrast, the Cdk5 gene in CaMKII cKO mice was deleted only in neurons. Because the development of mature oligodendrocytes from oligodendrocyte precursor cells is a complex process, we performed in situ hybridization using markers for the oligodendrocyte precursor cell and for the differentiated oligodendrocyte. Our results indicate that hypomyelination in Emx1-cKO is due to the impaired differentiation of oligodendrocytes, rather than to the proliferation or migration of their precursors. The present study confirmed the in vivo role of Cdk5 in oligodendrocyte differentiation.  相似文献   

6.
水通道 AQP1 敲除小鼠肿瘤血管生成障碍及肿瘤生长减缓   总被引:9,自引:1,他引:8  
血管生成是肿瘤生长、浸润和转移的必要步骤. 肿瘤血管生成涉及瘤旁组织血管内皮细胞增殖、向肿瘤细胞团内迁移以及管腔形成,目前机理尚不完全清楚. 水通道 AQP1 在多种肿瘤血管内皮高表达,提示其可能参与肿瘤血管的生成过程. 应用 AQP1 敲除小鼠荷瘤实验证实了 AQP1 在黑色素瘤生长和血管新生中的作用. 结果表明,皮下接种的黑色素瘤在 AQP1 敲除小鼠的生长较之在野生型小鼠延迟近 30% (P<0.01). 免疫组化与肿 瘤病理形态学分析显示, AQP1 在野生型小鼠黑色素瘤血管内皮细胞上高表达,而在 AQP1 敲除小鼠黑色素瘤血管内皮细胞呈阴性表达. 在病理结构上,黑色素瘤细胞围绕血管分支呈岛状分布. 野生型小鼠黑色素瘤内血管管腔较细小,而 AQP1(-/-)小鼠黑色素瘤内血管床显著膨大. AQP1(-/-)小鼠肿瘤内平均微血管密度 (47/mm2) 较之 AQP1(+/+) 肿瘤 (142/mm2) 减少 67% (P<0.01). 围绕 AQP1(-/-) 肿瘤血管的肿瘤细胞岛周边坏死区域明显大于 AQP1(+/+)肿瘤. 上述结果提出确切证据表明, AQP1 缺失使肿瘤血管生成发生障碍,从而影响了肿瘤血液供应和肿瘤生长. AQP1参与肿瘤血管生成的机理值得深入研究.  相似文献   

7.
8.
9.
Genetic ablation of the histamine producing enzyme histidine decarboxylase (HDC) leads to alteration in exploratory behaviour and hippocampus-dependent learning. We investigated how brain histamine deficiency in HDC knockout mice (HDC KO) affects hippocampal excitability, synaptic plasticity, and the expression of histamine receptors. No significant alterations in: basal synaptic transmission, long-term potentiation (LTP) in the Schaffer collateral synapses, histamine-induced transient changes in the CA1 pyramidal cell excitability, and the expression of H1 and H2 receptor mRNAs were found in hippocampal slices from HDC KO mice. However, when compared to WT mice, HDC KO mice demonstrated: 1. a stronger enhancement of LTP by histamine, 2. a stronger impairment of LTP by ammonia, 3. no long-lasting potentiation of population spikes by histamine, 4. a decreased expression of H3 receptor mRNA, and 5. less potentiation of population spikes by H3 receptor agonism. Parallel measurements in the hypothalamic tuberomamillary nucleus, the origin of neuronal histamine, demonstrated an increased expression of H3 receptors in HDC KO mice without any changes in the spontaneous firing of “histaminergic” neurons without histamine and their responses to the H3 receptor agonist (R)-α-methylhistamine. We conclude that the absence of neuronal histamine results in subtle changes in hippocampal synaptic transmission and plasticity associated with alteration in the expression of H3 receptors.  相似文献   

10.
目的研究APP5肽对糖尿病模型小鼠学习记忆能力及海马神经元蛋白表达的影响。方法用链脲佐菌素诱发小鼠糖尿病模型,应用APP5肽(0.0014 mg/kg)皮下注射治疗,5周后进行Morris水迷宫试验;小鼠脑组织海马做Akt、PI3K、P-CREB、Bcl-2、Bax、CytoC免疫组织化学染色;另一部分鼠脑海马,做Bcl-2、Bax抗体蛋白免疫印记。结果(1)水迷宫试验:糖尿病模型小鼠到达站台游动时间比正常对照组延长(P〈0.01);而APP5肽皮下注射治疗组较DM组动物分别缩短(P〈0.01)。(2)神经免疫组织化学实验和Western blot:给予APP5肽糖尿病小鼠与对照组小鼠海马组织内神经元表达细胞存活相关蛋白及抗凋亡相关蛋白PI3K、Akt、P-CREB、Bcl-2阳性细胞数相似,明显高于糖尿病小鼠(P〈0.01);APP5肽给予糖尿病小鼠与对照组小鼠表达凋亡蛋白Bax、cytoC阳性细胞数相似,明显少于糖尿病小鼠(P〈0.01)。Western blot结果相同。结论糖尿病小鼠海马神经元表达细胞存活相关蛋白下降,神经元表达细胞凋亡相关蛋白增加,导致其学习记忆能力下降。APP5肽应用可以使上述蛋白恢复到接近正常,从而改善糖尿病小鼠学习记忆能力。  相似文献   

11.
12.
13.
In neurons, specific RNAs are assembled into granules, which are translated in dendrites, however the functional consequences of granule assembly are not known. Tumor overexpressed gene (TOG) is a granule-associated protein containing multiple binding sites for heterogeneous nuclear ribonucleoprotein (hnRNP) A2, another granule component that recognizes cis-acting sequences called hnRNP A2 response elements (A2REs) present in several granule RNAs. Translation in granules is sporadic, which is believed to reflect monosomal translation, with occasional bursts, which are believed to reflect polysomal translation. In this study, TOG expression was conditionally knocked out (TOG cKO) in mouse hippocampal neurons using cre/lox technology. In TOG cKO cultured neurons granule assembly and bursty translation of activity-regulated cytoskeletal associated (ARC) mRNA, an A2RE RNA, are disrupted. In TOG cKO brain slices synaptic sensitivity and long term potentiation (LTP) are reduced. TOG cKO mice exhibit hyperactivity, perseveration and impaired short term habituation. These results suggest that in hippocampal neurons TOG is required for granule assembly, granule translation and synaptic plasticity, and affects behavior.  相似文献   

14.
It has been known for decades that neurons throughout the brain possess solitary, immotile, microtubule based appendages called primary cilia. Only recently have studies tried to address the functions of these cilia and our current understanding remains poor. To determine if neuronal cilia have a role in behavior we specifically disrupted ciliogenesis in the cortex and hippocampus of mice through conditional deletion of the Intraflagellar Transport 88 (Ift88) gene. The effects on learning and memory were analyzed using both Morris Water Maze and fear conditioning paradigms. In comparison to wild type controls, cilia mutants displayed deficits in aversive learning and memory and novel object recognition. Furthermore, hippocampal neurons from mutants displayed an altered paired-pulse response, suggesting that loss of IFT88 can alter synaptic properties. A variety of other behavioral tests showed no significant differences between conditional cilia mutants and controls. This type of conditional allele approach could be used to distinguish which behavioral features of ciliopathies arise due to defects in neural development and which result from altered cell physiology. Ultimately, this could lead to an improved understanding of the basis for the cognitive deficits associated with human cilia disorders such as Bardet-Biedl syndrome, and possibly more common ailments including depression and schizophrenia.  相似文献   

15.
星形胶质细胞上调基因-1(astrocyte upregulating gene-1,AEG-1)是HIV伴随老年痴呆患者脑组织中发现的星形胶质细胞上调基因之一,近年来研究表明其调控多种中枢神经系统疾病,但其在学习认知上的研究尚未见报道。海马和皮质在学习认知中起重要作用,利用CRISPR/Cas9技术结合Cre/loxp系统构建海马皮质特异性AEG-1敲除小鼠,在此模型鼠的基础上对AEG-1和学习认知的相关性进行初步研究。首先构建插入loxp位点的flox纯合型AEG-1fl/fl小鼠,与海马、新皮层特异性表达Cre+/+重组酶的工具鼠进行繁育,利用PCR技术筛选出子代基因型为AEG-1fl/fl Cre+的海马皮质特异性AEG-1敲除小鼠;然后利用Western blot技术和免疫荧光技术检测AEG-1基因在小鼠海马皮质中的敲除效率;最后应用新物体识别箱和三腔社会互动箱并结合SMART 3.0分析系统,对海马皮质特异性AEG-1敲除小鼠的学习记忆和社会交互行为学进行初步评价。结果显示:成功获得子代基因型为AEG-1fl/fl Cre+的基因敲除小鼠;AEG-1条件性敲除小鼠海马和皮质中AEG-1蛋白质表达水平较对照组显著降低;新物体识别结果表明AEG-1条件性敲除小鼠的区分系数明显低于对照组,表明AEG-1条件性敲除小鼠的学习记忆能力较弱,但是三腔交互结果表明AEG-1条件性敲除小鼠在社会交互上与对照组相比无明显差异。以上结果为AEG-1在学习认知方面的进一步研究奠定了基础。  相似文献   

16.
星形胶质细胞上调基因-1(astrocyte upregulating gene-1,AEG-1)是HIV伴随老年痴呆患者脑组织中发现的星形胶质细胞上调基因之一,近年来研究表明其调控多种中枢神经系统疾病,但其在学习认知上的研究尚未见报道。海马和皮质在学习认知中起重要作用,利用CRISPR/Cas9技术结合Cre/loxp系统构建海马皮质特异性AEG-1敲除小鼠,在此模型鼠的基础上对AEG-1和学习认知的相关性进行初步研究。首先构建插入loxp位点的flox纯合型AEG-1fl/fl小鼠,与海马、新皮层特异性表达Cre+/+重组酶的工具鼠进行繁育,利用PCR技术筛选出子代基因型为AEG-1fl/fl Cre+的海马皮质特异性AEG-1敲除小鼠;然后利用Western blot技术和免疫荧光技术检测AEG-1基因在小鼠海马皮质中的敲除效率;最后应用新物体识别箱和三腔社会互动箱并结合SMART 3.0分析系统,对海马皮质特异性AEG-1敲除小鼠的学习记忆和社会交互行为学进行初步评价。结果显示:成功获得子代基因型为AEG-1fl/fl Cre+的基因敲除小鼠;AEG-1条件性敲除小鼠海马和皮质中AEG-1蛋白质表达水平较对照组显著降低;新物体识别结果表明AEG-1条件性敲除小鼠的区分系数明显低于对照组,表明AEG-1条件性敲除小鼠的学习记忆能力较弱,但是三腔交互结果表明AEG-1条件性敲除小鼠在社会交互上与对照组相比无明显差异。以上结果为AEG-1在学习认知方面的进一步研究奠定了基础。  相似文献   

17.
Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.  相似文献   

18.
The exact molecular mechanisms governing articular chondrocytes remain unknown in skeletal biology. In this study, we have found that ESET (an ERG-associated protein with a SET domain, also called SETDB1) histone methyltransferase is expressed in articular cartilage. To test whether ESET regulates articular chondrocytes, we carried out mesenchyme-specific deletion of the ESET gene in mice. ESET knock-out did not affect generation of articular chondrocytes during embryonic development. Two weeks after birth, there was minimal qualitative difference at the knee joints between wild-type and ESET knock-out animals. At 1 month, ectopic hypertrophy, proliferation, and apoptosis of articular chondrocytes were seen in the articular cartilage of ESET-null animals. At 3 months, additional signs of terminal differentiation such as increased alkaline phosphatase activity and an elevated level of matrix metalloproteinase (MMP)-13 were found in ESET-null cartilage. Staining for type II collagen and proteoglycan revealed that cartilage degeneration became progressively worse from 2 weeks to 12 months at the knee joints of ESET knock-out mutants. Analysis of over 14 pairs of age- and sex-matched wild-type and knock-out mice indicated that the articular chondrocyte phenotype in ESET-null mutants is 100% penetrant. Our results demonstrate that expression of ESET plays an essential role in the maintenance of articular cartilage by preventing articular chondrocytes from terminal differentiation and may have implications in joint diseases such as osteoarthritis.  相似文献   

19.
为研究跑台运动对APP/PS1小鼠海马线粒体融合、分裂作用的影响,将遗传背景为C57BL/6的3月龄APP/PS1小鼠和野生小鼠各42只分别随机分为APP/PS1安静对照组(ADC,n=21)和运动组(ADE,n=21),野生安静对照组(WTC,n=21)和运动组(WTE,n=21)。ADE、WTE组进行12周跑台运动,同时ADC、WTC组置于安静跑台环境。水迷宫实验检测小鼠的空间学习记忆能力,RT-PCR法检测线粒体功能关键酶的mRNA水平,Western印迹检测海马融合、分裂及线粒体关键酶的蛋白质表达情况,透射电镜观察海马线粒体融合、分裂状态。结果发现,6月龄APP/PS1小鼠学习记忆能力降低(P<0.05);海马线粒体融合蛋白质Mfn1、Mfn2、Opa1表达降低(P<0.05),线粒体分裂蛋白质Drp1、Mff表达增高(P<0.05);线粒体膜结构模糊,嵴不明显,线粒体碎片增多,空泡化线粒体增多;线粒体呼吸关键酶COX IV及ATP合酶表达均下调(P<0.05)。12周跑台运动可逆转APP/PS1小鼠的上述变化,改善海马线粒体结构和功能,提高学习记忆能力。综上提示:12周跑台运动改善APP/PS1小鼠学习记忆能力的机制可能与其对线粒体结构与功能的改善有关。  相似文献   

20.
Connexin (Cx) proteins are essential for cell differentiation, function, and survival in all tissues with Cx43 being the most studied in bone. We now report that Cx37, another member of the connexin family of proteins, is expressed in osteoclasts, osteoblasts, and osteocytes. Mice with global deletion of Cx37 (Cx37−/−) exhibit higher bone mineral density, cancellous bone volume, and mechanical strength compared with wild type littermates. Osteoclast number and surface are significantly lower in bone of Cx37−/− mice. In contrast, osteoblast number and surface and bone formation rate in bones from Cx37−/− mice are unchanged. Moreover, markers of osteoblast activity ex vivo and in vivo are similar to those of Cx37+/+ littermates. sRANKL/M-CSF treatment of nonadherent Cx37−/− bone marrow cells rendered a 5-fold lower level of osteoclast differentiation compared with Cx37+/+ cell cultures. Further, Cx37−/− osteoclasts are smaller and have fewer nuclei per cell. Expression of RANK, TRAP, cathepsin K, calcitonin receptor, matrix metalloproteinase 9, NFATc1, DC-STAMP, ATP6v0d1, and CD44, markers of osteoclast number, fusion, or activity, is lower in Cx37−/− osteoclasts compared with controls. In addition, nonadherent bone marrow cells from Cx37−/− mice exhibit higher levels of markers for osteoclast precursors, suggesting altered osteoclast differentiation. The reduction of osteoclast differentiation is associated with activation of Notch signaling. We conclude that Cx37 is required for osteoclast differentiation and fusion, and its absence leads to arrested osteoclast maturation and high bone mass in mice. These findings demonstrate a previously unrecognized role of Cx37 in bone homeostasis that is not compensated for by Cx43 in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号