首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of transit time on the electrical transport noise of a closed one-barrier model at equilibrium as proposed by Kolb and Läuger [6] is studied using the master-equation approach. A transit time is the time for an ion to cross the energy barrier (membrane interior) when the energy of the ion reaches the barrier height. Both the time correlation function and the noise power spectrum are obtained as functions of the transit time of the ions. Possible effects of transit time on the time correlation function of transport of dipicrylamine ions in lipid bilayers as reported by Bruner and Hall [13] and on the noise power spectrum as reported by Kolb and Läuger [6] are discussed.  相似文献   

2.
The fluxes of carbohydrates across the plasma membranes of higher-plant cells are catalysed mainly by monosaccharide and disaccharide-H+ symporters. cDNAs encoding these different transporters have been cloned recently and the functions and properties of the encoded proteins have been studied extensively in heterologous expression systems. Several of the proteins have been identified biochemically in these expression systems and their location in plants has been shown immunohistochemically or with transgenic plants which were transformed with reporter genes, expressed under the control of the promoters of individual transporter genes. In this paper we summarize the current knowledge on the molecular biology and biochemistry of higher-plant sugar transport proteins.  相似文献   

3.
The role of plasma membrane redox activity in light effects in plants   总被引:1,自引:0,他引:1  
Stimulations by light of electron transport at the plasma membrane make it possible that redox activity is involved in light-induced signal transduction chains. This is especially true in cases where component(s) of the chain are also located at the plasma membrane. Photosynthetic reactions stimulate transplasma membrane redox activity of mesophyll cells. Activity is measured as a reduction of the nonpermeating redox probe, ferricyanide. The stimulation is due to production of a cytosolic electron donor from a substance(s) transported from the chloroplast. It is unknown whether the stimulation of redox activity is a requirement for other photosynthetically stimulated processes at the plasma membrane, but a reduced intermediate may regulate proton excretion by guard cells. Blue light induces an absorbance change (LIAC) at the plasma membrane whose difference spectrum resembles certainb-type cytochromes. This transport of electrons may be due to absorption of light by a flavoprotein. The LIAC has been implicated as an early step in certain blue light-mediated morphogenic events. Unrelated to photosynthesis, blue light also stimulates electron transport at the plasma membrane to ferricyanide. The relationship between LIAC and transmembrane electron flow has not yet been determined, but blue light-regulated proton excretion and/or growth may depend on this electron flow. No conclusions can be drawn regarding any role for phytochrome because of a paucity of information concerning the effects of red light on redox activity at the plasma membrane.  相似文献   

4.
Qiu  Z. -S.  Rubinstein  B.  Stern  A. I. 《Planta》1985,165(3):383-391
Exogenous ferricyanide is reduced by roots of Z. mays. In contrast to oxidation of exogenous electron donors, ferricyanide reduction occurs mostly at the apical 5 mm of the root. Using just this portion of the root, it is shown that the activity is neither a consequence of uptake of ferricyanide followed by excretion of its reduced form, nor of leakage of a reductant. Addition of ferricyanide for 40 s or 5 min results in an apparent oxidation of NADPH but not of NADH; rates of ferricyanide reduction vary together with levels of NADPH but not of NADH in the presence or absence of oxygen. It is concluded that an enzyme which can oxidize cytoplasmic NADPH and transfer the electrons to an external acceptor exists at the cell surface of maize roots. This finding extends the results of others who showed similar redox activity at the surface of Fe-depleted dicotyledonous roots, and indicates that an energy source other than ATP exists at the cell surface of a variety of plants under unstressed conditions.  相似文献   

5.
Under equilibrium and nonequilibnum steady-stale conditions the spectral intensity of current noise SJ(f) generated by the transport of hydrophobic unions across lipid bilayer membranes was investigated. The experimental results were compared with different reaction models SJ(f) showed a characteristic increase proportional to f2 between frequency-independent tails at low and high frequencies. This gradient was found to be independent of applied voltage which indicates the contribution of a single voltage-dependent reaction step of ion translocation across the membrane From the shape of SJ(f) at low frequencies the rate constant of ion desorption from the membrane into the aqueous phase could be estimated. Unambiguous evidence for the application of a general model, which includes the coupling of slow ion diffusion in the aqueous phase to ion adsorption/desorption at the membrane interface, could not be obtained from the low-frequency shape of SJ(f). The shot noise of this ion transport determines the amplitude of SJ(f) at high frequencies which decreases with increasing voltage applied. Analysis of voltage-jump current-relaxation experiments and of current noise carried cut on one membrane yielded significant differences of the derived ion partition coefficient. This deviation is qualitatively described on the basis of incomplete reaction steps.  相似文献   

6.
7.
The kinetic properties of the mediated transport of chloroquine in human erythrocytes are investigated. The high rates of translocation across the cell membrane and high adsorbance properties to glass surfaces have led to the development of new techniques for measuring initial rates of transport. Three different methodological procedures are used to accomplish a complete kinetic characterization of the system. All measurements were done at 25°C. Under zero-trans conditions the system displays complete symmetry, the Michaelis constants being 39.2±2.4 μM for influx and 36.6±5.6 μM for efflux. The respective maximal velocities are 206.4±36.0 μM·min?1 and 190.0±7.8 μM·min?1. Under equilibrium-exchange conditions the Michaelis constant is 108.6±15.6 μM and the maximal velocity is 630.3±50.4 μM·min?1. This 3-fold increase in both K and V over the zero-trans values indicates that the rate-limiting step in the transport of chloroquine is the movement of the unloaded carrier. The kinetic data are consistent with the prediction of a simple carrier model.  相似文献   

8.
9.
The twin-arginine translocation (Tat) pathway transports folded proteins across membranes in bacteria, thylakoids, plant mitochondria, and archaea. In most species, the active Tat machinery consists of three independent subunits: TatA, TatB, and TatC. TatA and TatB possess short transmembrane alpha helices (TMHs), both of which are only 15 residues long in Escherichia coli. Such short TMHs cause a hydrophobic mismatch between Tat subunits and the membrane bilayer, although the functional significance of this mismatch is unclear. Here, we sought to address the functional importance of the hydrophobic mismatch in the Tat transport mechanism in E. coli. We conducted three different assays to evaluate the effect of TMH length mutants on Tat activity and observed that the TMHs of TatA and TatB appear to be evolutionarily tuned to 15 amino acids, with activity dropping off following any modification of this length. Surprisingly, TatA and TatB with as few as 11 residues in their TMHs can still insert into the membrane bilayer, albeit with a decline in membrane integrity. These findings support a model of Tat transport utilizing localized toroidal pores that form when the membrane bilayer is thinned to a critical threshold. In this context, we conclude that the 15-residue length of the TatA and TatB TMHs can be seen as a compromise between the need for some hydrophobic mismatch to allow the membrane to reversibly reach the threshold thinness required for toroidal pore formation and the permanently destabilizing effect of placing even shorter helices into these energy-transducing membranes.  相似文献   

10.
The rate of translocation of the hydrophobic ion dipicrylamine across planar lipid membranes formed from dipalmitoyllecithin in n-decane was determined by voltage jump relaxation experiments. The activation energy of the rate constant shows a change from a positive to a negative value at about 42°C near the main phase transition temperature of this lipid. Below this temperature, the rate constant was found to increase with decreasing temperature. This anomalous behaviour extends over a temperature range of at least 10 K and may be formally interpreted as an enhanced mobility of dipicrylamine in the solid state of the membrane.  相似文献   

11.
Glutathione is one of the most abundant naturally occurring thiols in living organisms and is synthesized in its reduced from (GSH). GSH has been known to play a fundamental role in cellular events in different cells and tissues, including protection of organisms against oxidative stress. The two peptide linkages of GSH are sequentially degraded by -glutamyltransferase and peptidases that hydrolyze the cysteinylglycine bond; all these enzymes are localized on the outer surface of cell membranes. The turnover of GSH in animals can be understood on the basis of the following three factors: (1) synthesis of GSH occurs exclusively intracellularly, while its degradation occurs predominantly extracellularly; (2) plasma membranes of many tissues and cells have secretory transport systems for GSH and its derivatives; (3) levels of the transferase, a key enzyme for GSH degradation, differ from one tissue to another. Thus, GSH released from tissues with low transferase activity (such as the liver) must be transferred for its rapid turnover to tissues with high enzyme activity (such as the kidney). Further studies on the states of thiol compounds transported via the circulation should be relevant to the understanding of the full scope and physiological significance of the interorgan cooperation of GSH metabolism. Many enzymes and proteins have free SH and disulfide groups within molecules. Function, stability, and in vivo fate of these macromolecules could be affected significantly by their redox state. Although cells and tissues have enzymic defense mechanisms against oxidative stress, the mechanism by which the homeostasis of the redox state of extracellular compartments (such as plasma, urine, bile, etc.) is maintained remains obscure. Plasma mercaptoalbumin (M-Alb) has 17 disulfide bonds and one free cysteinyl residue (Cys-34). This free thiol group can form mixed disulfides with low-molecular weight compounds, such as GSH and cysteine, to generate nonmercaptoalbumin (NM-Alb). Thus, when titrated by several different thiol reagents, less than 1 mole of free SH group (0.4–0.7) was usually detected per mole albumin. The ratio of M-Alb to NM-Alb in plasma samples varies significantly from one sample to another. Many plasma proteins in nonalbumin fractions also formed mixed disulfides with GSH and cysteine. The extent of mixed disulfide formation and the ratio of M-Alb to NM-Alb appeared to change markedly, depending on the redox state of the organisms. The present paper describes the mode of interorgan metabolism and transport of GSH and related compounds, the mechanism by which the redox state of albumin and other plasma proteins is controlled, and their biological significance in healthy and diseased conditions in normal and analbuminemic mutant rats.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   

12.
The neutral noncyclic imide and ether containing ionophore (AS701), a selective carrier for Li+ among alkali cations, was found to be capable of mediating the transport of NH4+ and of biogenic amines (catechols and indoles) across lipid bilayer membranes also. Ionophore-mediated electrical properties of planar lipid bilayers were studied under experimental conditions where the positively-charged amine species was dominant. The ionophore was found to act as a selective carrier of the biogenic amines, mediating their electrogenic transport across the membrane, forming 2:1 carrier-amine permeant complexes, carrying a net-charge of +1. Selectively among the amines corresponding to the following sequence: tryptamine (35) > Li+ (1) > serotonin (0.60) > dopamine (0.19) > norepinephrine (0.13) > epinephrine (0.05) > NH4+ (0.05). The molecular factors involved in determining these selectivities are assessed.  相似文献   

13.
14.
Summary In jejunal brush-border membrane vesicles, an outwardly directed OH gradient (in>out) stimulates DIDS-sensitive, saturable folate (F) uptake (Schron, C.M. 1985.J. Clin. Invest. 76:2030–2033), suggesting carrier-mediated folate: OH exchange (or phenomenologically indistinguishable H+: folate cotransport). In the present study, the precise role of pH in the transport process was elucidated by examining F uptake at varying pH. For pH gradients of identical magnitude, F uptake (0.1 M) was greater at lower (pHint/pHext: 5.5/4.5) compared with higher (6.5/5.5) pH ranges. In the absence of a pH gradient, internal Ftrans stimulated DIDS-sensitive3H-folate uptake only at pH6.0. Since stepwise increments ininternal pH (4.57.5; pHext=4.5) stimulated F uptake, an inhibitory effect of higherinternal pH was excluded. In contrast, with increasing external pH (4.356.5; pHint=7.8), a 50-fold decrement in F uptake was observed (H+ K m =12.8±1.2 M). Hill plots of these data suggest involvement of at least one H+ (OH) at low pH (monovalent F predominates) and at least 2 H+ (OH) at high pH (divalent F–2 predominates). Since an inside-negative electrical potential did not affect F uptake at either pHext 4.55 or 5.8, transport of F and F–2 is electroneutral. Kinetic parameters for F and F–2 were calculated from uptake data at pHext 4.55 and 5.0. Comparison of predictedvs. experimentally determined kinetic parameters at pHext5.8 (K m =1.33vs. 1.70 M;V max=123.8vs. 58.0 pmol/mg prot min) suggest that increasing external pH lowers theV max, but does not affect theK m for carrier-mediated F transport. These data are consistent with similarK i ' s for sulfasalazine (competitive inhibitor) at pHext 5.35 and 5.8 (64.7 and 58.5 M, respectively). In summary, the jejunal F carrier mediates electroneutral transport of mono- and divalent F and is sensitive to external pH with a H+ K m (or OH lC50) corresponding to pH 4.89. External pH effects theV max, but not theK m for carriermediated F uptake suggesting a reaction mechanism involving a ternary complex between the outward-facing conformation of the carrier and the transported ions (F and either OH or H+),rather than competitive binding that is mutually exclusive.  相似文献   

15.
Summary In jejunal brush-border membrane vesicles, an out-wardly directed OH gradient (in>out) stimulates DIDS-sensitive, saturable folate (F) uptake (Schron, C.M., 1985).J. Clin. Invest. 76:2030–2033), suggesting carrier-mediated folate: OH exchange (or phenomenologically indistiguishable H+: folate cotransport). In the present study, the precise role of pH in the transport process was elucidated by examinin F uptake at varying pH. For pH gradients of identical magnitude, F uptake (0.1 M) was geater at lower (pHint/pHext:5.5/4.5) compared with higher (6.5/5.5) pH ranges. In the absence of a pH gradient, internal Ftrans stimulated DIDS-sensitive3H-folate uptake only at pH6.0. Since setepwise increments ininternal pH (4.57.5; pHext=4.5) stimulated F uptake, an inhibitory effect of higherinternal pH was excluded. In contrast, with increasing external pH(4.356.5; pHint=7.8), a 50-fold decrement in F uptake was observed (H+ K m =12.8±1.2m). Hill plots of these data suggest involvement of at least one H+ (OH) at high pH (divalent F–2 predominates). Since an inside-negative electrical potential did not affect F uptake at either pHext 4.55 or 5.8, transport of F and F–2 is electroneutral. Kinetic parameters for F and F–2 were calculated from uptake data at pHext 4.55 and 5.0. Comparision of predictedvs. experimentally determined kinetic parameters at pHext 5.8 (K m =1.33vs. 1.70 m;V max=12.8vs. 58.0 pmol/mg prot min) suggest that increasing external pH lowers theV max, but does not affect thatK m, for carrier-mediated F transport. These data are consistent with similarK i's for sulfasalazine (competitive inhibitor) at pHext 5.35 and 5.8 (64.7 and 58.5 m, respectively). In summary, the jejunal F carrier mediates electroneutral transport of mono- and divalen F and is sensitive to extermal pH with a H+ K m (or OH IC50) corresponding to pH 4.89. External pH affects theV max, but not theK m for carriermediated F uptake suggesting a reaction mechanism involving a ternary complex between the outward-facing conformation of the carrier and the transported ions (F and either OH or H+) rather than competitive binding that is mutually exclusive.  相似文献   

16.
Aluminum (Al) transport across yeast cells was studied using Dy(NO3)3 as a shift reagent by 27Al-NMR spectroscopy. The results showed that (a) Al enters the yeast cells at 15 min and over a period of time, within 4 h, an equilibrium sets in between outside and inside Al; (b) citrate does not favor Al going into the yeast cells at pH 5.0; and (c) EDTA brings out all the Al that has entered the yeast cells. (Mol Cell Biochem 175: 59–63, 1997)  相似文献   

17.
In brush border vesicles from guinea pig small intestine l-ascorbate transport is Na+-dependent and electroneutral (in the presence of Na+, as shown by its lack of response to either positive or negative Δψ across the membrane).l-Ascorbate transporter has the kinetic characteristics of a mobile carrier (Km for l-ascorbate, 0.3 mM). d-Isoascorbate (erythorbate) seems to be another, but poorer, substrate of the same transporter.l-Ascorbate transport is subjected to heterologous inhibition by d-glucose.  相似文献   

18.
Summary Brush border membranes were isolated from tilapia (Oreochromis mossambicus) intestine by the use of magnesium precipitation and differential centrifugation. The membrane preparation was enriched 17-fold in alkaline phosphatase. The membranes were 99% right-side-out oriented as indicated by the unmasking of latent glyceraldehyde-3-phosphate dehydrogenase and acetylcholine esterase activity by detergent treatment. The transport of Ca+2 in brush border membrane vesicles was analyzed. A saturable and a nonsaturable component in the uptake of Ca+2 was resolved. The saturable component is characterized by a K m much lower than the Ca+2 concentrations predicted to occur in the intestinal lumen. The nonsaturable component displays a Ca+2 permeability too high to be explained by simple diffusion. We discuss the role of the saturable component as the rate-limiting step in transmembrane Ca+2 movement, and suggest that the nonsaturable component reflects a transport mechanism operating well below its level of saturation.The authors wish to thank Tom Spanings for his superb organization of fish husbandry, and Maarten de Jong (Dept. of Physiology, Faculty of Medicine, University of Nijmegen) for making the automated stopped-flow apparatus available to us.  相似文献   

19.
Movement of proteins and lipids between the various compartments of eukaryotic cells is fundamental to the maintenance of cellular homeostasis, and an understanding of the molecular mechanisms that govern these processes remains a key goal of cell biological research. This aim has been greatly facilitated by the development of assays that recapitulate specific events in vitro. In the following article we provide an overview of some of the currently used assays that measure the movement of proteins within the exocytic and endocytic pathways, and provide a starting point for those wishing to establish their own systems to study other vesicular transport steps.  相似文献   

20.
Gunnar Fröman 《FEBS letters》1982,143(2):220-224
Absorption, circular dichroism, electron spin resonance and resonance Raman spectra of a blue copper protein, plantacyanin from cucumber peel have been measured and these spectral properties compared with those of other blue copper proteins. From the spectral properties, amino acid analysis and redox potential, we discuss the active site and redox properties of this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号