首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Catalytic methane decomposition can become a green process for hydrogen production. In the present study, yttria doped nickel based catalysts were investigated for catalytic thermal decomposition of methane. All catalysts were prepared by sol-gel citrate method and structurally characterized with X-ray powder diffraction (XRD), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and Brunauer, Emmet and Teller (BET) surface analysis techniques. Activity tests of synthesized catalysts were performed in a tubular reactor at 500 ml/min total flow rate and in a temperature range between 390 °C and 845 °C. In the non-catalytic reaction, decomposition of methane did not start until 880 °C was reached. In the presence of the catalyst with higher nickel content, methane conversion of 14% was achieved at the temperature of 500 °C. Increasing the reaction temperature led to higher coke formation. Lower nickel content in the catalyst reduced the carbon formation. Consequently, with this type of catalyst methane conversion of 50% has been realized at the temperature of 800 °C.  相似文献   

4.
Biogas derived from livestock manure and food residue contains CO2 and H2S as well as methane. The effect of CO2 and H2S coexistence on the production of hydrogen and solid carbon by methane decomposition over iron oxide catalysts was investigated. The catalytic activity for methane decomposition was decreased by the coexistence of H2S. Moreover, the activity decrease was aggravated by the coexistence of CO2 as well as H2S, and higher temperature was required to mitigate the activity decrease by the coexistence of CO2. By increasing the amount of catalyst, the upstream catalyst was preferentially poisoned, but the downstream catalyst developed catalytic activity thanks to its sacrifice. With 2 g of catalyst, the maximum conversion of pure methane was about 85% at 840 °C, but it was slightly less than 80% in the presence of H2S or H2S + CO2. When the catalyst amount was increased to 4 g, the conversion of pure methane was about 90% at 800 °C, but 84% in the presence of H2S and 80% in the presence of H2S + CO2. The poisoning by H2S was irreversible at low temperatures but became reversible at higher temperatures. Since H2S is adsorbed by the deposited carbon, the procedure for further removal of H2S may be omitted. The coexistence of H2S also affected the shape of the deposited carbon. Although carbon-based catalysts are known to be effective for methane decomposition in the presence of H2S, iron oxide catalysts have the advantage of superior methane conversion at low temperatures. By flowing methane with CO2 and H2S from the downstream side after the reaction flowing from the upstream side for a certain period of time, the catalytic lifetime was drastically extended and the amount of hydrogen and solid carbon produced was dramatically increased, compared to the case of flowing from upstream all the way.  相似文献   

5.
Hydrogen production by methane decomposition: A review   总被引:1,自引:0,他引:1  
Methane decomposition can be utilized to produce COX-free hydrogen for PEM fuel cells, oil refineries, ammonia and methanol production. Recent research has focused on enhancing the production of hydrogen by the direct thermocatalytic decomposition of methane to form elemental carbon and hydrogen as an attractive alternative to the conventional steam-reforming process. In this context, we review a comprehensive body of work focused on the development of metal or carbonaceous catalysts for enhanced methane conversion and on the improvement of long-term catalyst stability. This review also evaluates the roles played by various parameters, such as temperature and flow rate, on the rate of hydrogen production and the characteristics of the carbon produced. The heating source, type of reactor, operating conditions, catalyst type and its preparation, deactivation and regeneration and the formation and utilization of the carbon by-product are discussed and classified in this paper. While other hydrogen production methods, economic aspects and thermal methane decomposition methods using alternative heating sources such as solar and plasma are briefly presented in this work where relevant, the review focuses mainly on the thermocatalytic decomposition of methane using metal and carbonaceous catalysts.  相似文献   

6.
Thermo-catalytic decomposition of methane using carbons as catalyst is a very attractive process for free CO2–hydrogen production. One of the main drawbacks for the sustainability of the process is catalyst deactivation. In this work, regeneration of a deactivated active-carbon catalyst has been studied using CO2 as activating agent under different regeneration conditions. It has been stated that during the regeneration stage, a compromise between the regeneration of the initial properties of the catalyst and the burn-off is needed in order to keep the sustainability of the process. Three deactivation–regeneration cycles have been performed for two sets of regeneration conditions. A progressive decreasing in the burn-off, surface area and surface oxygenated groups after each decomposition/regeneration cycle is observed. It can be explained considering that the carbon removed during the regeneration steps is not the carbon deposited from methane but the remaining initial catalyst, which is less resistant to gasification. The implication is that after three cycles of decomposition/regeneration, most of the carbon sample consists of carbon formed during the process since the initial catalyst has been gasified.  相似文献   

7.
8.
Catalytic methane decomposition (CMD) receives increasing attention for co-production of COx-free hydrogen and valuable carbon by-product, and the catalyst plays a crucial role on methane conversion and the product features. Unsupported nickel catalysts derived from commercial nickel foam (NF) were prepared for CMD by mild pre-treatment. Effects of the pre-treatment method (acid treatment, thermal treatment, acid-thermal treatment and hydrogen reduction) and reaction temperature were explored on the NF morphology and CMD reactivity in a fixed-bed reactor. It is found that catalytic performance of the NF-based catalyst is highly dependent on the pre-treatment and reaction temperature. The thermal and acid-thermal treatments could greatly promote the catalytic activity (with methane conversion up to 74.6% and 91.8%, respectively) at 850 °C. To fully release potential abilities of the catalyst, the carbon deposited spent catalyst was recycled as a fresh catalyst in the CMD test by several strategies. High and stable methane conversion (up to around 90%–93%) can be achieved by simulating the operation model in a fluidized-bed reactor for a continuous CMD process. Besides, the carbon deposited spent catalyst could serve as a promising candidate of supercapacitor electrode material.  相似文献   

9.
Catalytic decomposition of methane over carbon materials has been intensively studied as an environmental approach for CO2-free hydrogen production without further by-products except hydrogen and valuable carbon. In this work, we will investigate the catalytic activity of activated carbons based on olive stones prepared by two different processes. Additionally, the effect of three major operational parameters: temperature, weight of catalyst and flow rate of methane, was determined. Therefore, a series of experiments were conducted in a horizontal-flow fixed bed reactor. The outflow gases were analysed using a mass spectrometer. The textural, structural and surface chemistry properties of both fresh and used activated carbons were determined respectively by N2 gas adsorption, X-Ray Diffraction and Raman and Temperature Programmed Desorption. The results reveal that methane decomposition rate increases with temperature and methane flow however it decreases with catalyst weight. The two carbon samples exhibit a high initial activity followed by a rapid decay. Textural characterization of the deactivated carbon presents a dramatic drop of surface area, pore and micropore volumes against an increase of average pore diameter confirming that methane decomposition occurs mainly in micropores. XRD characterization shows a turbostratic structure of fresh samples with more graphitization in deposed carbon explaining the lowest activity at the end of reaction. Raman spectra reveal the domination of the two bands G and D which varying intensities affirm that the different carbons tend to organise in aromatic rings. Finally the surface chemistry qualitatively changes greatly after methane dissociation for CAGOC unlike CAGOP but quantitatively a small difference is observed which indicates that these functionalities may have a role in this heterogeneous reaction but cannot be totally responsible. Among the two catalysts tested, CAGOC has the highest initial methane decomposition rate but CAGOP is the most stable one.  相似文献   

10.
Amorphous nanosilica powder was extracted from rice husk and used as a catalyst support as well as a starting material for the preparation of different binary oxides, i.e., SiO2Al2O3, SiO2MgO, SiO2CeO2 and SiO2La2O3. A series of supported nickel catalysts with the metal loading of 50 wt % were prepared by wet impregnation method and evaluated in methane decomposition to “COx-free” hydrogen production. The fresh and spent catalysts were extensively characterized by different techniques. Among the evaluated catalysts, both Ni/SiO2Al2O3 and Ni/SiO2La2O3 catalysts were the most active with an over-all H2 yield of ca. 80% at the initial period of the reaction. This distinguishable higher catalytic activity is mainly referred to the presence of free mobile surface NiO and/or that NiO fraction weakly interacted with the support easily reducible at low temperatures. The Ni/SiO2CeO2 catalyst has proven a great potential for application in the hydrogen production in terms of its catalytic stability. The formation of MgxNi(1?x)O solid solution caused the Ni/SiO2MgO catalyst to lose its activity and stability at a long reaction time. Various types of carbon materials were formed on the catalyst surface depending on the type of support used. TEM images of as-deposited carbon showed that multi-walled carbon nanotubes (MWCNTs) and graphene platelets were formed on Ni/SiO2, while only MWCNTs were deposited on all binary oxide supported Ni catalysts.  相似文献   

11.
Activated carbons (ACs) are of good potential to be the catalysts for methane decomposition to produce hydrogen without CO and CO2. Coal liquefaction residue (CLR) seems to be a promising precursor for ACs. In this work, several types of ACs were prepared by KOH activation from Shenhua CLR with addition of SiO2 or SBA-15. The catalytic activity and stability for methane decomposition were investigated and compared with commercial coal-based AC and carbon black (BP2000). The results show that the prepared ACs have larger surface area, narrower pore distribution, and higher catalytic activity than those directly prepared by KOH activation, and are superior to the commercial carbons. The increased microporosity resulting from the soluble salts formed by the reaction between the additive and KOH is responsible for the high catalytic activity.  相似文献   

12.
Biogas derived from sewage sludge contains CO2, siloxane, and methane. In this study, the effect of coexistence of siloxane on the production of hydrogen and carbon nanofiber by methane decomposition using iron oxide-alumina catalyst was investigated. The catalyst was reduced by heating in a flow of methane. Siloxane addition to methane caused a catalytic activity at lower temperatures, shortened the induction period prior to the activity, and accelerated catalytic deactivation. Thermal decomposition of siloxane can occur at a lower temperature compared to that of methane. Carbon species formed by the siloxane decomposition may have a higher reducibility than methane does. The reactivity may lead to a carbon deposition at a lower temperature. Coexistence of CO2 and siloxane can prolong a catalytic lifetime because CO2 may inhibit the carbon deposition on catalyst to some extent.  相似文献   

13.
Catalyst samples for CH4 decomposition were prepared from red mud (RM) by an acid-leaching neutralization precipitation approach. Water-washing the resultant precipitates multiple times, followed by drying at 105 °C and calcination at 500 °C, resulted in a threshold of residual Na2O, equivalent to 96% Na2O removal. Drying the precipitate at a higher temperature of 200 °C, followed by repeated water washing, provided a deeper Na2O removal of 99% and made the resultant samples more active for the targeted reaction. Subsequently, four catalyst samples with a simulated red mud composition and NaOH contents from 0 to 0.3 wt% were prepared and the catalytic test results revealed that the Na2O remaining in the RM-derived catalysts did not only inhibit their activation in CH4 but also lower their maximal activities for CH4 decomposition. Finally, two catalysts with the same simulated red mud composition and their Na impregnated respectively on Fe2O3 and a mixture support of Al2O3-SiO2-TiO2 were prepared and tested to explore the effect of Na distribution on the activation behavior of RM-derived catalysts for CH4 decomposition. The activity testing results showed that it was the Na residual dispersed on iron oxides in the RM-derived samples to significantly inhibit the activation of CH4 decomposition.  相似文献   

14.
The reaction kinetics of methane decomposition to yield hydrogen and carbon has been investigated comparing different types of carbonaceous catalysts: two ordered mesoporous carbons (CMK-3 and CMK-5) and two commercial carbon blacks (CB-bp and CB-v). The evolution of the reaction rate along the time has been analyzed concluding that it is governed by different and opposite events: reduction of active sites by carbon deposition, autocatalytic effects of the carbon deposits and pore blockage and diffusional constraints. A relatively simple kinetic model has been developed that fits quite well the experimental reaction rate curves in spite of the complexity of the involved phenomena.  相似文献   

15.
In this paper, the results obtained in the catalytic decomposition of methane in a fixed bed reactor using a NiCuAl catalyst prepared by the fusion method are presented. The influences of reaction temperature and space velocity on hydrogen concentration in the outlet gases, as well as on the properties of the carbon produced, have been investigated. Reaction temperature and the space velocity both increase the reaction rate of methane decomposition, but also cause an increase in the rate of catalyst deactivation. Under the operating conditions used, the carbon product is mainly deposited as nanofibers with textural properties highly correlated with the degree of crystallinity.  相似文献   

16.
Hydrogen production by methane decomposition has been studied using different cobalt catalysts obtained by reduction of cobalt oxide precursors synthesized in ethylene glycol and using three different precipitating agents: sodium carbonate, ammonium hydroxide and urea. The physicochemical properties of the catalysts precursors vary with the precipitating agent, which shows a significant influence in their catalytic performance. Thus, the catalysts obtained from precursors precipitated with Na2CO3 or CO(NH2)2 show remarkable catalytic activity at lower temperatures, which in both cases has been assigned to the lower particle size and aggregation degree of the final metallic Co phase. Accordingly, the use of urea as precipitating agent led to the catalyst with the highest H2 production at 600 °C after 12 h of time on stream. Likewise, it is worth mentioning that the catalyst prepared using Na2CO3 shows significant activity in this reaction even at temperatures as low as 400 °C.  相似文献   

17.
Ni and Co supported on SiO2 and Al2O3 silica cloth thin layer catalysts have been investigated in the catalytic decomposition of natural gas (CDNG) reaction. The influence of carrier nature and reaction temperature was evaluated with the aim to individuate the key factors affecting coke formation. Both Ni and Co silica supported catalysts, due to the low metal support interaction (MSI), promotes the formation of carbon filament with particles at tip. On the contrary, in case alumina was used as support, metals strongly interact with surface thus depressing both the metal sintering and the detachment of particles from catalyst surface. In such cases, carbon grows on metal particle with a “base mechanism” while particles remain well anchored on the catalyst surface. This allowed to realize a cyclic dual-step process based on methane decomposition and catalyst oxygen regeneration without deactivation of catalyst. Technological considerations have led to conclude that the implement of a process based on decomposition and regeneration of catalyst by oxidation requires the development of a robust catalytic system characterized by both a strong MSI and a well defined particle size distribution. In particular, the catalyst should be able to operate at high temperature, necessary to reach high methane conversion values (> 90%), avoiding at the same time the formation of both the carbon filaments with metal at tip or the encapsulating carbon which drastically deactivate the catalyst.  相似文献   

18.
Greenhouse gases, carbon dioxide and methane are utilized in the production of hydrogen through carbon dioxide reforming of methane catalyzed by Ni-Co/MgO-ZrO2 catalyst. Design of Experiments (DOE) was used to study the effects of process variables such as, carbon dioxide to methane ratios (1-5), gas hourly space velocity (8400-200,000 mL/g/h), oxygen concentration in the feed (3-8 mol%) and reaction temperature (700-800 °C) over methane conversion and yield of hydrogen. The ANOVA analysis indicated that the effect of each process variable was significant to its respective responses in the proposed quadratic model. The response surface methodology (RSM) was used to find the optimum value of the process variables by maximizing the hydrogen yield in the process model. The optimum space velocity as 145,190 mL/g/h at reaction temperature 749 °C with carbon dioxide to methane ratio of 3 and 7 mol% of oxygen in the feed gave 88 mol% of CH4 conversion and 86 mol% of hydrogen yield, respectively. The experiments were run at the optimum condition gave 87.7 mol% methane conversion and 85.5 mol% of hydrogen yield, which were in good agreement with the simulated values obtained from the model. The catalyst stability and its regeneration characteristics were studied at the optimum condition by monitoring methane conversion and hydrogen yield with time on stream.  相似文献   

19.
Herein, non-supported pure and mixed cobalt and iron oxide catalysts were synthesized from nitrate precursors using a simple, environmentally friendly preparation method in which water was the sole solvent. The prepared catalysts were then used to decompose methane into hydrogen and carbon (graphene nanosheets and carbon nanotubes). The fresh and spent catalysts were characterized by employing X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy-energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM) and N2 adsorption-desorption techniques. In addition, the spent catalysts were subjected to thermo-gravimetric analysis (TGA) in order to measure the quantity of carbon deposits on the spent catalysts. The results indicated that the carbon deposited over these catalysts is a mixture of graphene nanosheets and carbon nanotubes (CNT). The results indicated that the mixed oxide catalysts exhibit higher catalytic activity than the pure oxides and that Fe: Co atomic ratio represents the key factor in the catalytic activity of these mixed oxides. After 420 min under the reaction feed, the 50Fe + 50Co catalyst shows the highest catalytic activity towards methane conversion of about 52.6% compared to 41.6% and 31.8% for 75Fe + 25Co and 25Fe + 75Co catalysts, respectively.  相似文献   

20.
A catalytic comparative study of COx-free hydrogen production by methane decomposition was carried out. Catalytic performances of bulk Ni-mixed oxides derived from Ni/Mg/Al-hydrotalcites (ex-HTs-Ni) were compared with those obtained with Ni supported on mixed oxides derived from Mg/Al-hydrotalcites (Ni/ex-HTs), or on commercial supports (γ-Al2O3, MgO and MgO-modified γ-Al2O3). Catalyst characterization and their catalytic performance showed both ex-HTs-Ni and Ni/ex-HTs appear to be a similar regardless of their method of preparation. Ni/γ-Al2O3 was the best supported catalyst, although the catalytic performances of the ex-HTs catalysts were better. Higher NiMg interaction in ex-HTs provides higher resistance to deactivation. Characterization by TG, Raman spectroscopy and TEM of spent catalysts in the reaction suggest the degree of ordering of the graphitic layers of the carbon deposit onto the catalyst surface is the key factor in the catalyst deactivation. The higher degree of ordering or graphitization of the carbon produced with the higher concentration of sp2 carbons on the surface of the Ni/γ-Al2O3 favours its faster deactivation by Ni-coverage than the bulk catalyst (ex-HT-Ni), in which the MWNT type carbon is mainly obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号