首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogels find widespread applications in biomedical engineering due to their hydrated environment and tunable properties (e.g., mechanical, chemical, biocompatible) similar to the native extracellular matrix (ECM). However, challenges still exist regarding utilizing hydrogels in applications such as engineering 3D tissue constructs and active targeting in drug delivery, due to the lack of controllability, actuation, and quick‐response properties. Recently, magnetic hydrogels have emerged as a novel biocomposite for their active response properties and extended applications. In this review, the state‐of‐the‐art methods for magnetic hydrogel preparation are presented and their advantages and drawbacks in applications are discussed. The applications of magnetic hydrogels in biomedical engineering are also reviewed, including tissue engineering, drug delivery and release, enzyme immobilization, cancer therapy, and soft actuators. Concluding remarks and perspectives for the future development of magnetic hydrogels are addressed.  相似文献   

2.
Nucleic acids are gaining significant attention as versatile building blocks for the next generation of soft materials. Due to significant advances in the chemical synthesis and biotechnological production, DNA becomes more widely available enabling its usage as bulk material in various applications. This has prompted researchers to actively explore the unique features offered by DNA‐containing materials like hydrogels. In this review article, recent developments in the field of hydrogels that feature DNA as a component either in the construction of the material or as functional unit within the construct and their biomedical applications are discussed in detail. First, different synthetic approaches for obtaining DNA hydrogels are summarized, which allows classification of DNA materials according to their structure. Then, new concepts, properties, and applications are highlighted such as DNA‐based biosensor devices, drug delivery platforms, and cell scaffolds. With the 2018 Nobel Prize in Physiology or Medicine being awarded to cancer immunotherapy underscoring the importance of this therapy, DNA hydrogel systems designed to modulate the immune system are introduced. This review aims to give the reader a timely overview of the most important and recent developments in this emerging class of therapeutically useful materials of DNA‐based hydrogels.  相似文献   

3.
Hydrogels are promising materials in the applications of wound adhesives, wearable electronics, tissue engineering, implantable electronics, etc. The properties of a hydrogel rely strongly on its composition. However, the optimization of hydrogel properties has been a big challenge as increasing numbers of components are added to enhance and synergize its mechanical, biomedical, electrical, and self-healable properties. Here in this work, it is shown that high-throughput screening can efficiently and systematically explore the effects of multiple components (at least eight) on the properties of polysulfobetaine hydrogels, as well as provide a useful database for diverse applications. The optimized polysulfobetaine hydrogels that exhibit outstanding self-healing and mechanical properties, have been obtained by high-throughput screening. By compositing with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), intrinsically self-healable and stretchable conductors are achieved. It is further demonstrated that a polysulfobetaine hydrogel-based electronic skin, which exhibits exceptionally fast self-healing capability of the whole device at ambient conditions. This work successfully extends high-throughput synthetic methodology to the field of hydrogel electronics, as well as demonstrates new directions of healable flexible electronic devices in terms of material development and device design.  相似文献   

4.
With the remarkable development of DNA nanotechnology, interest in DNA molecules has expanded beyond its biological role to building blocks in materials science. As a unique branch of DNA-based materials, DNA hydrogels have exhibited many fascinating characteristics, including broad biocompatibility, precise programmability, convenient modification, and tunable mechanical properties, which make DNA hydrogels ideal biomaterials. Moreover, by combining with functional nucleic acids, such as aptamers, i-motif nanostructures, CpG oligodeoxynucleotides, and DNAzymes, DNA hydrogels can be further tailored to provide additional target recognition, therapeutic potential, and catalytic activities, allowing them to play important roles in biosensing and medical applications. This review, aims to provide readers with an up-to-date overview of the important developments of biomedical DNA hydrogels. First, it introduces different synthetic strategies of hydrogels that utilize DNA as building materials and functional units within the hydrogel networks and discuss their advantages in biomedical applications. Subsequently, new approaches and applications of biomedical DNA hydrogels in the recent years are highlighted, such as therapeutic systems, cell culture platforms, tissue engineering materials, and biosensors. Finally, future perspectives and remaining challenges of DNA hydrogels in biomedicine are presented.  相似文献   

5.
Nanoparticle network hydrogels (NNHs) in which nanoparticles are used as a key building block to build the gel network have attracted significant interest given their potential to leverage the favorable properties of both hydrogels (e.g., hydrophilicity, tunable pore sizes, mechanics, etc.) and a variety of different nanoparticles (e.g., high surface area, chemical activity, independently tunable porosity, mechanics) to create new functional materials. Herein, recent progress in the design and use of NNHs is comprehensively reviewed, with an emphasis on defining the typical gel morphologies/architectures that can be achieved with NNHs, the typical crosslinking approaches used to fabricate NNHs, the fundamental properties and functional benefits of NNHs, and the reported applications of NNHs in electronics (flexible electronics, sensors), environmental (sorbents, separations), agriculture, self-cleaning-materials, and biomedical (drug delivery, tissue engineering) applications. In particular, the way in which the NNH structure is applied to improve the performance of the hydrogel in each application is emphasized, with the aim to develop a set of principles that can be used to rationally design NNHs for future uses.  相似文献   

6.
An emerging approach to improve the physicobiochemical properties and the multifunctionality of biomaterials is to incorporate functional nanomaterials (NMs) onto 2D surfaces and into 3D hydrogel networks. This approach is starting to generate promising advanced functional materials such as self‐assembled monolayers (SAMs) and nanocomposite (NC) hydrogels of NMs with remarkable properties and tailored functionalities that are beneficial for a variety of biomedical applications, including tissue engineering, drug delivery, and developing biosensors. A wide range of NMs, such as carbon‐, metal‐, and silica‐based NMs, can be integrated into 2D and 3D biomaterial formulations due to their unique characteristics, such as magnetic properties, electrical properties, stimuli responsiveness, hydrophobicity/hydrophilicity, and chemical composition. The highly ordered nano‐ or microscale assemblies of NMs on surfaces alter the original properties of the NMs and add enhanced and/or synergetic and novel features to the final SAMs of the NM constructs. Furthermore, the incorporation of NMs into polymeric hydrogel networks reinforces the (soft) polymer matrix such that the formed NC hydrogels show extraordinary mechanical properties with superior biological properties.  相似文献   

7.
In the development of artificial hydrogels, emulating the mechanical properties of biological tissues with a desirable combination of stiffness and toughness is crucial. To achieve such properties, a design principle inspired by a natural structural composite to wet hydrogels is applied. The bioinspired structural composite hydrogel consisting of layered microplatelets and polymer matrix with strong polymer–platelet interactions is fabricated by a facile method, that is, drying-induced unidirectional shrinkage and rehydration process coupled with secondary ionic crosslinking. The resulting hydrogels exhibit a combination of high tensile strength and elastic modulus (on the order of several MPa) and high fracture energy (up to ≈ 2 kJ·m−2). The results suggest the potential of the bioinspired approach that is limitedly applied in dry composites for developing mechanically robust composite hydrogels.  相似文献   

8.
Organogels are an important class of gels, and are comparable to hydrogels owing to their properties as liquid-infused soft materials. Despite the extensive choice of liquid media and compatible networks that can provide a broader range of properties, relatively few studies are reported in this area. This review presents the applicability of organogels concerning their choice of components, unique properties, and applications. Their distinctive features compared to other gels are discussed, including multi-stimuli responses, affinity to a broad range of substances, thermal and environmental stability, electronic and ionic conductivity, and actuation. The active role of solvents is highlighted in the versatility of organogel properties. To differentiate between organogels and other gels, these are classified as gels filled with different organic liquids, including highly polar organic solvents and binary solvent systems. Most promising applications of organogels as sophisticated multifunctional materials are discussed in light of their unique features.  相似文献   

9.
Protein hydrogels have attracted considerable interest due to their potential applications in biomedical engineering. Creating protein hydrogels with dynamic mechanical properties is challenging. Here, the engineering of a novel, rationally designed protein‐hydrogel is reported that translates molecular level protein folding‐unfolding conformational changes into macroscopic reversibly tunable mechanical properties based on a redox controlled protein folding‐unfolding switch. This novel protein folding switch is constructed from a designed mutually exclusive protein. Via oxidation and reduction of an engineered disulfide bond, the protein folding switch can switch its conformation between folded and unfolded states, leading to a drastic change of protein's effective chain length and mechanical compliance. This redox‐responsive protein can be readily photochemically crosslinked into solid hydrogels, in which molecular level conformational changes (folding‐unfolding) can result in significant macroscopic changes in hydrogel's physical and mechanical properties due to the change of the effective chain length between two crosslinking points in the protein hydrogel network. It is found that when reduced, the hydrogel swells and is mechanically compliant; when oxidized, it swells to a less extent and becomes resilient and stiffer, exhibiting an up to fivefold increase in its Young's modulus. The changes of the mechanical and physical properties of this hydrogel are fully reversible and can be cycled using redox potential. This novel protein hydrogel with dynamic mechanical and physical properties could find numerous applications in material sciences and tissue engineering.  相似文献   

10.
Solar-driven interfacial evaporation has emerged as an innovative and sustainable technology for efficient, clean water production. Real-world applications depend on new classes of low-cost, lightweight, and robust materials that can be integrated into one monolithic device, which withstands a variety of realistic conditions on open water. Self-repairing building blocks are highly desired to prevent permanent failures, recover original functions and maintain the lifetime of interfacial steam generators, although related studies are scarce to date. For the first time, a monolithic, durable, and self-floating interfacial steam generator with well-defined structures is demonstrated by integrating self-healing hydrogels through facile processes in surface modulation and device fabrication. High and stable water evaporation rates over 2.0 kg m−2 h−1 are attained under 1 sun on both fresh water and brine with a broad range of salinity (36–210 g kg−1). The solar evaporation and desalination performance are among the best-performing interfacial steam generators and surpass a majority of devices that are constructed by composite polymers as structural components. This study provides a perspective and highlights the future opportunities in self-healing and damage-tolerant materials that can simultaneously improve the performance, durability, and lifetime of interfacial steam generators in real-world applications.  相似文献   

11.
Harvesting low-grade waste heat from the natural environment with thermoelectric materials is considered as a promising solution for the sustainable energy supply for wearable electronic devices. For practical applications, it is desirable to endow the thermoelectric materials with excellent mechanical and self-healing properties, which remains a great challenge. Herein, the design and characterization of a series of high-performance ionic hydrogels for soft thermoelectric generator applications are reported. Composed of a physically cross-linked network of polyacrylic acid (PAA) and polyethylene glycol (PEO) doped with sodium chloride, the resulting PAA-PEO-NaCl ionic hydrogels demonstrates impressive mechanical strength (breaking stress >1.3 MPa), stretchability (>1100%), and toughness (up to 7.34 MJ m−3). Moreover, the reversible hydrogen bonding interaction and chain entanglement render the ionic hydrogels with excellent mechanical resilience, adhesion properties, and self-healing properties. At ambient conditions, the electrochemical and thermoelectric performance of the ionic hydrogels can be restored immediately from physical damage such as cutting, and the mechanical healing can be completely restored within 24 h. At the optimized composition, the Seebeck coefficient of the ionic hydrogels can reach 3.26 mV K−1 with a low thermal conductivity of 0.321 W m−1 K−1. Considering the excellent mechanical properties and thermoelectric performance, it is believed that the ionic hydrogels are widely applicable in ionic thermoelectric capacitors to convert low-grade heat into electricity for soft electronic devices.  相似文献   

12.
The adhesion strategies of the gecko's toe through surface adaptation of spatulas to increase contact area and the snail's epiphragm via dehydration-induced solidification to lock interfaces are combined to design a class of adhesion-switchable hydrogels. The hydrogels are made via incorporating CH3COONa·3H2O salt (SA) into polyacrylamide (PAM) aqueous networks to construct supersaturated and stimuli-responsive phase change materials (PAM-SA). The crystallization dramatically strengthens the mechanical properties, and tensile Young's moduli are 340.7 and 0.1 MPa for crystalline C-PAM-SA-120% and soft PAM hydrogel. As a result, PAM-SA-120% shows excellent adhesive performance (adhesion strength, 348 kPa) compared with PAM hydrogel adhesive (adhesion strength, 7 kPa). The stimuli-induced crystallization from H-PAM-SA-120% phase change hydrogels releases thermal controllably, which can be utilized for thermochromic materials and thermotherapy.  相似文献   

13.
Photoresponsive hydrogels (PRHs) are soft materials whose mechanical and chemical properties can be tuned spatially and temporally with relative ease. Both photo‐crosslinkable and photodegradable hydrogels find utility in a range of biomedical applications that require tissue‐like properties or programmable responses. Progress in engineering with PRHs is facilitated by the development of theoretical tools that enable optimization of their photochemistry, polymer matrices, nanofillers, and architecture. This review brings together models and design principles that enable key applications of PRHs in tissue engineering, drug delivery, and soft robotics, and highlights ongoing challenges in both modeling and application.  相似文献   

14.
Periodontitis is a biofilm-induced, host-mediated inflammatory disease that results in periodontal tissue destruction. The design of functional biomaterials based on disease pathophysiology is essential for enhancing their therapeutic effects in periodontitis treatment. As promising localized drug delivery systems and tissue engineering scaffolds, hydrogels have gained significant interest for controlled and sustained release of bioactive agents in periodontal applications. The rational design of bioactive hydrogels can facilitate bacterial control and modulate destructive host inflammation, thereby preventing the progression of periodontitis. In this review, the pathophysiological mechanisms underlying periodontitis as fundamental principles for the design of functional hydrogel systems are first introduced. In the following part, an overview is systematically provided of the types and functions of the bioactive hydrogel systems loaded with anti-bacterial and anti-inflammatory agents for periodontal delivery. Finally, the remaining challenges and future perspectives of hydrogel delivery systems for periodontal applications are proposed. It is believed that this review will inspire the rational design and development of innovative functional hydrogel biomaterials toward periodontal therapy.  相似文献   

15.
Fibrous networks of biopolymers possess unique properties: mechanical stability at low concentrations, an extremely porous architecture, and strong stiffening at small deformations. An outstanding challenge is to find methods that allow to tailor the mechanical properties of these bionetworks or their synthetic equivalents without changing the polymer concentration, which simultaneously changes all other hydrogel properties. Here, networks of dilute (0.1 wt.%) fibrous hydrogels are prepared and crosslink them with functional rod-shaped nanoparticles. The crosslinking is observed to induce an architectural change that strongly affects the mechanical properties of the hydrogels with a 40-fold increase in stiffness. The effect is strongest at the lowest polymer and particle concentrations (99.8% water) and is tailorable through tuning the crosslink density. Moreover, the nanoparticle components in the composite offer the opportunity to introduce additional functions; gels with magnetic and conductive properties are reported. However, through the generic crosslinking approach of a fibrous network with decorated nanoparticle crosslinkers as presented in this work, virtually any functionality may be introduced in highly responsive hydrogels, providing a guide to design next generations of multi-functional soft materials.  相似文献   

16.
17.
Additive manufacturing is a promising technology that can directly fabricate structures with complex internal geometries, which is barely achieved by traditional manufacturing. However, the mechanical properties of fused deposition modeling (FDM)-printed objects are inferior to those of conventionally manufactured products. To improve the mechanical properties of the printed products, a series of novel thermoplastic polyurethanes with self-healing properties, intrinsic photothermal effects, and excellent printability are designed and synthesized by introducing dynamic oxime–carbamate bonds and hydrogen bonds into the polymer chains. On-demand introduction of near-infrared (NIR) irradiation, direct heating, and sunlight irradiation enhances interfacial bonding strength and thus improve the mechanical properties of the printed product. Additionally, mechanical anisotropy of the printed products can be sophistically manipulated by regulating the self-healing conditions. Support-free printing and healing of damaged printed products are also achieved owing to the self-healing properties of the material. Moreover, the as-prepared materials exhibit shape-memory properties NIR irradiation or direct heating effectively triggers shape-memory recovery and demonstrates their potential in 4D printing by printing a man-like robot. This study not only provides a facile strategy for obtaining high-performance printed products but also broadens the potential applications of FDM technology in intelligent devices.  相似文献   

18.
19.
Exploitation of unique biochemical and biophysical properties of marine organisms has led to the development of functional biomaterials for various biomedical applications. Recently, ascidians have received great attention, owing to their extraordinary properties such as strong underwater adhesion and rapid self‐regeneration. Specific polypeptides containing 3,4,5‐trihydroxyphenylalanine (TOPA) in the blood cells of ascidians are associated with such intrinsic properties generated through complex oxidative processes. In this study, a bioinspired hydrogel platform is developed, demonstrating versatile applicability for tissue engineering and drug delivery, by conjugating pyrogallol (PG) moiety resembling ascidian TOPA to hyaluronic acid (HA). The HA–PG conjugate can be rapidly crosslinked by dual modes of oxidative mechanisms using an oxidant or pH control, resulting in hydrogels with different mechanical and physical characteristics. The versatile utility of HA–PG hydrogels formed via different crosslinking mechanisms is tested for different biomedical platforms, including microparticles for sustained drug delivery and tissue adhesive for noninvasive cell transplantation. With extraordinarily fast and different routes of PG oxidation, ascidian‐inspired HA–PG hydrogel system may provide a promising biomaterial platform for a wide range of biomedical applications.  相似文献   

20.
Polysaccharide‐based hydrogels have multiple advantages because of their inherent biocompatibility, biodegradability, and non‐toxicic properties. The feasibility of using polysaccharide‐based hydrogels could be improved if they could simultaneously fulfill the mechanical property and cell compatibility requirements for practical applications. Herein, the construction of double‐cross‐linked (DC) cellulose hydrogels is described using sequential chemical and physical cross‐linking, resulting in DC cellulose hydrogels that are mechanically superior to single‐cross‐linked cellulose hydrogels. The formation and spatial distribution of chemically cross‐linked domains and physically cross‐linked domains within the DC cellulose hydrogels are demonstrated. The molar ratio of epichlorohydrin to anhydroglucose units of cellulose and the concentration of the aqueous ethanol solution are two critical parameters for obtaining mechanically strong and tough DC cellulose hydrogels. The mechanical properties of the DC cellulose hydrogels under loading‐unloading cycles are described using compression and tension models. The possible toughening mechanism of double‐cross‐linking is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号