首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability to tune the electronic properties of soluble wide bandgap semiconductors is crucial for their successful implementation as carrier‐selective interlayers in large area opto/electronics. Herein the simple, economical, and effective p‐doping of one of the most promising transparent semiconductors, copper(I) thiocyanate (CuSCN), using C60F48 is reported. Theoretical calculations combined with experimental measurements are used to elucidate the electronic band structure and density of states of the constituent materials and their blends. Obtained results reveal that although the bandgap (3.85 eV) and valence band maximum (?5.4 eV) of CuSCN remain unaffected, its Fermi energy shifts toward the valence band edge upon C60F48 addition—an observation consistent with ptype doping. Transistor measurements confirm the p‐doping effect while revealing a tenfold increase in the channel's hole mobility (up to 0.18 cm2 V?1 s?1), accompanied by a dramatic improvement in the transistor's bias‐stress stability. Application of CuSCN:C60F48 as the hole‐transport layer (HTL) in organic photovoltaics yields devices with higher power conversion efficiency, improved fill factor, higher shunt resistance, and lower series resistance and dark current, as compared to control devices based on pristine CuSCN or commercially available HTLs.  相似文献   

2.
Copper(I) thiocyanate (CuSCN) is rising to prominence as a hole‐transporting semiconductor in various opto/electronic applications. Its unique combination of good hole mobility, high optical transparency, and solution‐processability renders it a promising hole‐transport layer for solar cells and p‐type channel in thin‐film transistors. CuSCN is typically deposited from sulfide‐based solutions with diethyl sulfide (DES) being the most widely used. However, little is known regarding the effects of DES on CuSCN films despite the fact that DES can coordinate with Cu(I) and result in a different coordination polymer having a distinct crystal structure when fully coordinated. Herein, the coordination of DES in CuSCN films is thoroughly investigated with a suite of characterization techniques as well as density functional theory. This study reveals that DES directly affects the microstructure of CuSCN by stabilizing the polar crystalline surfaces via the formation of strong coordination bonds. Furthermore, a simple antisolvent treatment is demonstrated to be effective at modifying the microstructure and morphology of CuSCN films. The treatment with tetrahydrofuran or acetone leads to uniform films consisting of CuSCN crystallites with high crystallinity and their surfaces passivated by DES molecules, resulting in an increase in the hole mobility from 0.01 to 0.05 cm2 V?1 s?1.  相似文献   

3.
4.
This study reports the development of copper(I) thiocyanate (CuSCN) hole‐transport layers (HTLs) processed from aqueous ammonia as a novel alternative to conventional n‐alkyl sulfide solvents. Wide bandgap (3.4–3.9 eV) and ultrathin (3–5 nm) layers of CuSCN are formed when the aqueous CuSCN–ammine complex solution is spin‐cast in air and annealed at 100 °C. X‐ray photoelectron spectroscopy confirms the high compositional purity of the formed CuSCN layers, while the high‐resolution valence band spectra agree with first‐principles calculations. Study of the hole‐transport properties using field‐effect transistor measurements reveals that the aqueous‐processed CuSCN layers exhibit a fivefold higher hole mobility than films processed from diethyl sulfide solutions with the maximum values approaching 0.1 cm2 V?1 s?1. A further interesting characteristic is the low surface roughness of the resulting CuSCN layers, which in the case of solar cells helps to planarize the indium tin oxide anode. Organic bulk heterojunction and planar organometal halide perovskite solar cells based on aqueous‐processed CuSCN HTLs yield power conversion efficiency of 10.7% and 17.5%, respectively. Importantly, aqueous‐processed CuSCN‐based cells consistently outperform devices based on poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate HTLs. This is the first report on CuSCN films and devices processed via an aqueous‐based synthetic route that is compatible with high‐throughput manufacturing and paves the way for further developments.  相似文献   

5.
Wide bandgap hole‐transporting semiconductor copper(I) thiocyanate (CuSCN) has recently shown promise both as a transparent p‐type channel material for thin‐film transistors and as a hole‐transporting layer in organic light‐emitting diodes and organic photovoltaics. Herein, the hole‐transport properties of solution‐processed CuSCN layers are investigated. Metal–insulator–semiconductor capacitors are employed to determine key material parameters including: dielectric constant [5.1 (±1.0)], flat‐band voltage [?0.7 (±0.1) V], and unintentional hole doping concentration [7.2 (±1.4) × 1017 cm?3]. The density of localized hole states in the mobility gap is analyzed using electrical field‐effect measurements; the distribution can be approximated invoking an exponential function with a characteristic energy of 42.4 (±0.1) meV. Further investigation using temperature‐dependent mobility measurements in the range 78–318 K reveals the existence of three transport regimes. The first two regimes observed at high (303–228 K) and intermediate (228–123 K) temperatures are described with multiple trapping and release and variable range hopping processes, respectively. The third regime observed at low temperatures (123–78 K) exhibits weak temperature dependence and is attributed to a field‐assisted hopping process. The transitions between the mechanisms are discussed based on the temperature dependence of the transport energy.  相似文献   

6.
一种新型磷光铜(I)配合物及其红光OLED   总被引:7,自引:4,他引:3  
合成了一种新的Cu(I)配合物[Cu(DPEphos)(DPPZ)]BF4(CuL1L2),其中DPE-phos和DPPz分别代表(2-二苯基膦基)苯基醚和二吡啶并[3,2-a:2′,3′-c]吩嗪,利用该配合物分别制备了双层及掺杂的有机发光二极管(OLED)。其中掺杂器件在621nm处有较强的金属配合物三重态的红色磷光发射,最大亮度为582cd/m2,是目前首次报道的Cu(I)-配合物器件红光EL发射。  相似文献   

7.
Organic–inorganic lead halide perovskite solar cells are promising alternatives to silicon‐based cells due to their low material costs and high photovoltaic performance. In this work, thin continuous perovskite films are combined with copper(I) iodide (CuI) as inorganic hole‐conducting material to form a planar device architecture. A maximum conversion efficiency of 7.5% with an average efficiency of 5.8 ± 0.8% is achieved which, to our knowledge, is the highest reported efficiency for CuI‐based devices with a planar structure. In contrast to related planar 2,2′,7,7′‐tetrakis‐(N,N ‐di‐4‐methoxyphenylamino)‐9,9′‐spirobifluorene (spiro‐OMeTAD)‐based devices, the CuI‐based devices do not show a pronounced hysteresis when tested by scanning the potential in a forward and backward direction. The strong quenching of photoluminescence (PL) signal and comparatively fast decay of open‐circuit voltage demonstrates a more rapid removal of positive charge carriers from the perovskite layer when in contact with CuI compared to spiro‐OMeTAD. A slow response on a timescale of 10–100 s is observed for the spiro‐OMeTAD‐based devices. In comparison, the CuI‐based device displays a significantly faster response as determined through electrochemical impedance spectroscopy (EIS) and open‐circuit voltage decays (OCVDs). The characteristically slow kinetics measured through EIS and OCVD are linked directly to the current–voltage hysteresis.  相似文献   

8.
The synthesis and characterization of copper (I) selenocyanate (CuSeCN) and its application as a solution‐processable hole‐transport layer (HTL) material in transistors, organic light‐emitting diodes, and solar cells are reported. Density‐functional theory calculations combined with X‐ray photoelectron spectroscopy are used to elucidate the electronic band structure, density of states, and microstructure of CuSeCN. Solution‐processed layers are found to be nanocrystalline and optically transparent (>94%), due to the large bandgap of ≥3.1 eV, with a valence band maximum located at ?5.1 eV. Hole‐transport analysis performed using field‐effect measurements confirms the p‐type character of CuSeCN yielding a hole mobility of 0.002 cm2 V?1 s?1. When CuSeCN is incorporated as the HTL material in organic light‐emitting diodes and organic solar cells, the resulting devices exhibit comparable or improved performance to control devices based on commercially available poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate as the HTL. This is the first report on the semiconducting character of CuSeCN and it highlights the tremendous potential for further developments in the area of metal pseudohalides.  相似文献   

9.
Organic light-emitting diodes (OLEDs) utilizing purely organic thermally activated delayed fluorescence (TADF) sensitizers have recently achieved high efficiencies and narrow-band emissions. However, these devices still face intractable challenges of severe efficiency roll-off at practical luminance and finite operational lifetime. Herein, a carbene-Cu(I)-amide complex, (MAC*)Cu(Cz), is demonstrated as a TADF sensitizer for both fluorescent and TADF OLEDs. The (MAC*)Cu(Cz)-sensitized fluorescent OLED not only achieves a high external quantum efficiency (EQE) of 14.6% with an extremely low efficiency roll-off of 12% at the high luminance of 10 000 nits, but also delivers a 15 times longer operational lifetime than that of the non-sensitized reference device. More importantly, utilizing the (MAC*)Cu(Cz) sensitizer in the multi-resonance (MR) TADF OLED results in a record-high EQE of 26.5% together with a full-width at half maximum of 46 nm and an emission peak at 566 nm. This value is the state-of-the-art efficiency for yellow-emitting MR-TADF OLEDs. The photophysical analysis proved that the fast reverse intersystem crossing process of (MAC*)Cu(Cz) is the key factor to suppress triplet exciton involved quenching at high luminance. This finding firstly demonstrates the use of Cu(I) complex as an efficient TADF sensitizer and paves the way for practical applications of TADF sensitized OLEDs.  相似文献   

10.
Copper(I) halides are emerging as attractive alternatives to lead halide perovskites for optical and electronic applications. However, blue-emitting all-inorganic copper(I) halides suffer from poor stability and lack of tunability of their photoluminescence (PL) properties. Here, the preparation of silver(I) halides A2AgX3 (A = Rb, Cs; X = Cl, Br, I) through solid-state synthesis is reported. In contrast to the Cu(I) analogs, A2AgX3 are broad-band emitters sensitive to A and X site substitutions. First-principle calculations show that defect-bound excitons are responsible for the observed main PL peaks in Rb2AgX3 and that self-trapped excitons (STEs) contribute to a minor PL peak in Rb2AgBr3. This is in sharp contrast to Rb2CuX3, in which the PL is dominated by the emission by STEs. Moreover, the replacement of Cu(I) with Ag(I) in A2AgX3 significantly improves photostability and stability in the air under ambient conditions, which enables their consideration for practical applications. Thus, luminescent inks based on A2AgX3 are prepared and successfully used in anti-counterfeiting applications. The excellent light emission properties, significantly improved stability, simple preparation method, and tunable light emission properties demonstrated by A2AgX3 suggest that silver(I) halides may be attractive alternatives to toxic lead halide perovskites and unstable copper(I) halides for optical applications.  相似文献   

11.
This report presents a simple and efficient method of layer thinning and p‐type doping of WSe2 with vapor XeF2. With this approach, the surface roughness of thinned WSe2 can be controlled to below 0.7 nm at an etched depth of 100 nm. By selecting appropriate vapor XeF2 exposure times, 23‐layer and 109‐layer WSe2 can be thinned down to monolayer and bilayer, respectively. In addition, the etching rate of WSe2 exhibits a significant dependence on vapor XeF2 exposure pressure and thus can be tuned easily for thinning or patterning applications. From Raman, photoluminescence, X‐ray photoelectron spectroscopy (XPS), and electrical characterization, a p‐doping effect of WSe2 induced by vapor XeF2 treatment is evident. Based on the surface composition analysis with XPS, the causes of the p‐doping effect can be attributed to the presence of substoichiometric WOx (x < 3) overlayer, trapped reaction product of WF6, and nonstoichiometric WSex (x > 2). Furthermore, the p‐doping level can be controlled by varying XeF2 exposure time. The thinning and p‐doping of WSe2 with vapor XeF2 have the advantages of easy scale‐up, high etching selectivity, excellent controllability, and compatibility with conventional complementary metal‐oxide‐semiconductor fabrication processes, which is promising for applications of building WSe2 devices with versatile functionalities.  相似文献   

12.
The concept of using printed inorganic/organic hybrid distributed Bragg reflectors (DBRs) utilizing inorganic semiconductor and insulating polymers in microcavity polymer electroluminescent devices is introduced to provide an approach to achieve the spectral narrowing and the strong forward directionality. The large refractive index contrast of approximately 0.5 (0.44) between inorganic copper(I) thiocyanate, CuSCN, and insulating polymer of poly(vinylidene fluoride-trifluoroethylene), P(VDF-TrFE) (cellulose acetate, CA) results in the fabrication of solution-processed inorganic-organic hybrid dielectric DBRs with high reflectivity (>90%) from nanostructures consisting of only four (five) bilayers. For DBRs composed of CuSCN/CA alternative dielectric layers, all-solution processed microcavity polymer light-emitting diode based on highly conductive poly(ethylenedioxythiophene):poly(styrenesulfonate) anode except for Ag cathode exhibits the narrowing of EL spectrum with a full width at half maximum of approximately 25 nm and the maximum luminance of above 10,000 cd/m2. From the viewpoint of dielectric DBRs based on ferroelectric polymer P(VDF-TrFE) with both low refractivity and high permittivity, we demonstrate a microcavity AC voltage-driven polymer electroluminescent device (μcACEL) which exhibits the spectral narrowing and the strong forward directionality. This work is anticipated to be useful for the development of solution-processed μcACEL with unique device architecture.  相似文献   

13.
The efficiency of earth-abundant Cu2ZnSn(S,Se)4 (CZTSSe) solar cells is considerably lower than the Shockley–Queisser limit. One of the main reasons for this is the presence of deleterious cation disordering caused by SnZn antisite and 2CuZn+SnZn defect clusters, resulting in a short minority carrier lifetime and significant band tailing, leading to a large open-circuit voltage deficit, and hence, low efficiency. In this study, Ga-doping is used to increase the CZTSSe solar cell efficiency to as high as 12.3%, one of the highest for this type of cells. First-principles calculations show that the preference of Ga3+ occupying Zn and Sn sites has a benign effect on suppressing the formation of the SnZn deep donor defects by upwardly shifting the Fermi level, which is further confirmed by deep-level transient spectroscopy characterization. Besides, the Ga dopants can also form defect-dopant clusters, such as GaZn+CuZn and GaZn+GaSn, which also have positive effects on suppressing the band-tailing states. The defect engineering via Ga3+-doping may suppress the band-tailing defect with a decreased Urbach energy, elevate the minority carrier lifetime, and in the end, enhance the VOC from 473 to 515 mV. These results provide a new route to further increase CZTSSe-based solar cell efficiency by defect engineering.  相似文献   

14.
We herein report a theoretical study using density functional theory (DFT) and time-dependent DFT (TD-DFT) methods to investigate Cu(I) complexes with 2-(2′-pyridyl/quinolyl)imidazole and bis[2-(diphenylphosphino)phenyl]ether mixed ligands. Based on the experimental data for complexes 1 and 2, we first benchmarked different functionals with different HF% and found B3PW91 to be the optimal functional for this system. The computational results indicate that complex 1, with a pyridyl unit, has a much larger radiative decay rate (kr) than complex 2, which has a quinolyl unit. This difference is presumably due to higher HOMO electronic distribution in the dx2-y2 orbital, which leads to a markedly shortened CuN2 bond, enhancing the metal-ligand interaction. However, a much smaller experimental value was found for the non-radiative decay rate (knr) in complex 2, rendering 1 a slightly weaker emitter than 2. We conclude that the difference is due to more effective suppression of deformation when the quinolyl unit is used instead of pyridyl. We sought to increase the photoluminescence quantum yield (PLQY) through modifying the ligand on complex 2, with the goal being to keep the small knr value while simultaneously increasing kr. The computational results indicate that our designed complexes 2a-2c, which possess modified ligands with electron-donating or withdrawing alkyl substituents on N3, increased the distributions of dx2-y2 and decreased that of the dyz compared to 2. Their coordinating abilities were therefore enhanced, with the kr values being 1.34, 22.70, and 0.16 times that of 2 for 2a, 2b and 2c, respectively. Higher PLQYs were achieved in 2a and 2b with the addition of electron-donating alkyl substituents on the ligands, which yielded complexes with significantly shortened CuN2 bonds and enhanced metal-ligand interaction. This investigation on the microscopic mechanism of the photoluminescent properties of these complexes can provide useful knowledge for experimentalists.  相似文献   

15.
Recently, the use of a new family of electroluminescent copper(I) complexes—i.e., the archetypal [Cu(IPr)(3‐Medpa)][PF6] complex; IPr: 1,3‐bis‐(2,6‐di‐iso‐propylphenyl)imidazole‐2‐ylidene; 3‐Medpa: 2,2′‐bis‐(3‐methylpyridyl)amine—has led to blue light‐emitting electrochemical cells (LECs) featuring luminances of 20 cd m?2, stabilities of 4 mJ, and efficiencies of 0.17 cd A?1. Herein, this study rationalizes how to enhance these figures‐of‐merit optimizing both device fabrication and design. On one hand, a comprehensive spectroscopic and electrochemical study reveals the degradation of this novel emitter in common solvents used for LEC fabrication, as well as the impact on the photoluminescence features of thin‐films. On the other hand, spectro‐electrochemical and electrochemical impedance spectroscopy assays suggest that the device performance is strongly limited by the irreversible formation of oxidized species that mainly act as carrier trappers and luminance quenchers. Based on all of the aforementioned, device optimization was realized using ionic additives and a hole transporter either as a host–guest or as a multilayered architecture approach to decouple hole/electron injection. The latter significantly enhances the LEC performance, reaching luminances of 160 cd m?2, stabilities of 32.7 mJ, and efficiencies of 1.2 cd A?1. Overall, this work highlights the need of optimizing both device fabrication and design toward highly efficient and stable LECs based on cationic copper(I) complexes.  相似文献   

16.
Acceptor doping of many II–VI compound semiconductors has proved problematic and doping of epitaxial mercury cadmium telluride (MCT, Hg1−x Cd x Te) with arsenic is no exception. High-temperature (>400°C) anneals followed by a lower temperature mercury-rich vacancy-filling anneal are frequently required to activate the dopant. The model frequently used to explain p-type doping with arsenic invokes an amphoteric nature of group V atoms in the II–VI lattice. This requires that group VI substitution with arsenic only occurs under mercury-rich conditions either during growth or the subsequent annealing and involves site switching of the As. However, there are inconsistencies in the amphoteric model and unexplained experimental observations, including arsenic which is 100% active as grown by metalorganic vapor-phase epitaxy (MOVPE). A new model, based on hydrogen passivation of the arsenic, is therefore proposed.  相似文献   

17.
Graphene has been considered to be a potential alternative transparent and flexible electrode for replacing commercially available indium tin oxide (ITO) anode. However, the relatively high sheet resistance and low work function of graphene compared with ITO limit the application of graphene as an anode for organic or polymer light‐emitting diodes (OLEDs or PLEDs). Here, flexible PLEDs made by using bis(trifluoromethanesulfonyl)amide (TFSA, [CF3SO2]2NH) doped graphene anodes are demonstrated to have low sheet resistance and high work function. The graphene is easily doped with TFSA by means of a simple spin‐coating process. After TFSA doping, the sheet resistance of the TFSA‐doped five‐layer graphene, with optical transmittance of ≈88%, is as low as ≈90 Ω sq?1. The maximum current efficiency and power efficiency of the PLED fabricated on the TFSA‐doped graphene anode are 9.6 cd A?1 and 10.5 lm W?1, respectively; these values are markedly higher than those of the PLED fabricated on pristine graphene anode and comparable to those of an ITO anode.  相似文献   

18.
19.
The selective tuning of the operational mode from ambipolar to unipolar transport in organic field‐effect transistors (OFETs) by printing molecular dopants is reported. The field‐effect mobility (μFET) and onset voltage (Von) of both for electrons and holes in initially ambipolar methanofullerene [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) OFETs are precisely modulated by incorporating a small amount of cesium fluoride (CsF) n‐type dopant or tetrafluoro‐tetracyanoquinodimethane (F4‐TCNQ) p‐type dopant for n‐channel or p‐channel OFETs either by blending or inkjet printing of the dopant on the pre‐deposited semiconductor. Excess carriers introduced by the chemical doping compensate traps by shifting the Fermi level (EF) toward respective transport energy levels and therefore increase the number of mobile charges electrostatically accumulated in channel at the same gate bias voltage. In particular, n‐doped OFETs with CsF show gate‐voltage independent Ohmic injection. Interestingly, n‐ or p‐doped OFETs show a lower sensitivity to gate‐bias stress and an improved ambient stability with respect to pristine devices. Finally, complementary inverters composed of n‐ and p‐type PCBM OFETs are demonstrated by selective doping of the pre‐deposited semiconductor via inkjet printing of the dopants.  相似文献   

20.
采用固相反应烧结法制备了ZrO2掺杂的Ba(Zn1/3Ta2/3)O3微波介质陶瓷,研究了陶瓷的烧结特性和介电性能。结果表明,ZrO2掺杂能有效降低Ba(Zn1/3Ta2/3)O3陶瓷的烧结温度,改善陶瓷的微波介电性能。当x(ZrO2)=4%时,Ba(Zn1/3Ta2/3)O3陶瓷致密化烧结温度由纯相时的1 600℃降至1 300℃,同时陶瓷材料的微波介电性能达到最佳值,即介电常数εr=34.79,品质因数与频率的乘积Q×f=148 000(8GHz),谐振频率温度系数τf=0.3×10-6/℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号