首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Covalent organic frameworks (COFs) are proposed as promising candidates for engineering advanced molecular sieving membranes due to their precise pore sizes, modifiable pore environment, and superior stability. However, COFs are insoluble in common solvents and do not melt at high temperatures, which presents a great challenge for the fabrication of COF-based membranes (COFMs). Herein, for the first time, a new synthetic strategy is reported to prepare continuous and intact self-standing COFMs, including 2D N-COF membrane and 3D COF-300 membrane. Both COFMs show excellent selectivity of H2/CO2 mixed gas (13.8 for N-COF membrane and 11 for COF-300 membrane), and especially ultrahigh H2 permeance (4319 GPU for N-COF membrane and 5160 GPU for COF-300 membrane), which is superior to those of COFMs reported so far. It should be noted that the overall separation performance of self-standing COFMs exceeds the Robeson upper bound. Furthermore, a theoretical study based on Grand Canonical Monte Carlo (GCMC) simulation is performed to explain the excellent separation of H2/CO2 through COFMs. Thus, this facile preparation method will provide a broad prospect for the development of self-standing COFMs with highly efficient H2 purification.  相似文献   

2.
Covalent organic frameworks (COFs) have emerged as an exciting new class of porous materials constructed by organic building blocks via dynamic covalent bonds. They have been extensively explored as potentially superior candidates for electrode materials, electrolytes, and separators, due to their tunable chemistry, tailorable structures, and well-defined pores. These features enable rational design of targeted functionalities, facilitate the penetration of electrolytes, and enhance ion transport. This review provides an in-depth summary of the recent progress in the development of COFs for diverse battery applications, including lithium-ion, lithium–sulfur, sodium-ion, potassium-ion, lithium–CO2, zinc-ion, zinc–air batteries, etc. This comprehensive synopsis pays particular attention to the structure and chemistry of COFs and novel strategies that have been implemented to improve battery performance. Additionally, current challenges, possible solutions, and potential future research directions on COFs for batteries are discussed, laying the groundwork for future advances for this exciting class of material.  相似文献   

3.
4.
Photocatalytic reactions for fuel generation are crucial for the world's energy needs. Covalent-Organic-Frameworks (COFs) have been extensively studied as promising designable photocatalysts for these reactions due to their efficient visible-light absorption, suitable energy-band structure, facilitated intramolecular charge separation, and fast mass transfer. However, the activities of pristine COFs remain unsatisfactory, due to intermolecular charge recombination. Recently, COF-based heterostructures, which combine COFs with metal-sulfides, metal-oxides, carbon materials, or MOFs, have attracted increasing attention for enhancing solar-to-fuel conversion efficiency by facilitating interfacial photo-generated carrier separation, sensitizing wide-gap semiconductors, and promoting surface redox reactions. Thus, a review of the state-of-the-art progress of COF-based heterostructure photocatalysts in reactions such as H2 evolution, CO2 reduction, O2 evolution, H2O splitting and CO2 splitting is crucial for the design of new photocatalysts to promote solar-to-fuel conversion. In this review, the COF-based heterostructures photocatalysts are highlighted based on their synthesis, properties, and reasons for enhanced activities. Moreover, design principles are raised for such photocatalysts for each fuel generation reaction, based on insights into related research. Finally, this review is concluded by proposing future trends for COF-based heterostructures photocatalysts, with attention to the design of COFs and supports, analyzing the photocatalytic reaction dynamics, together with considering practical applications.  相似文献   

5.
Along with the increasingly wide application of intelligent electronics, triboelectric nanogenerator (TENG), as a promising sustainable micro-power source has attracted considerable attention recently. However, most of the reported research focuses on negative triboelectric materials, while research on alternative positive tribo-layers is still limited. In this study, a new highly fluorinated covalent organic framework (COF) Tp-TFAB is successfully synthesized and utilized as positive triboelectric materials for high-performance TENGs. Unusually, compared with the non-fluorinated Tp-TAPB COF, both the pristine Tp-TFAB COF and corresponding hybrid films with polyvinyl alcohol (PVA) based TENGs demonstrate much higher triboelectric performance. Especially, a PVC-PVA/FTC TENG composed of polyvinyl chloride (PVC) and hybrid PVA/Tp-TFAB (PVA/FTC) films reveal much superior triboelectric performance with a short-circuit current density of 26.34 mA m−2, a transferred charge density of 148.5 µC m−2, and a maximum peak power density of 8.24 W m−2, nearly six times higher than that of the PVC-PVA TENG. Detailed investigations revealed that the fluorinated Tp-TFAB COF has enhanced electron donating ability, which significantly boosts the triboelectric output of TENGs. This study provides an effective strategy of chemically designing and synthesizing new alternative triboelectric materials, which will pave the way to significantly enhance the triboelectric performance of TENGs.  相似文献   

6.
Covalent organic frameworks (COFs) have received great attention as electrode materials in the lithium-ion batteries due to their exceptional crystallinity, easily chemical modification, and adjustable porous distribution. However, their practical application remains hindered by the insufficient Li+ active sites and long ion diffusion in the bulk materials. To tackle those issues, combining the virtues of high stable skeleton structure of large molecular, atomic-layer thickness feature, and multi-active sites, a novel atomic-layer COF cathode (denoted as E-TP-COF) with a dual-active-center of CO and CN group is developed. The atomic-layer thick structure improves the capturing and diffusion of Li-ion. Both active sites of CN and CO groups generate more capacity. The large molecular structure avoids the dissolubility challenge in electrolytes. As a result, the lithium-ion batteries assembled with E-TP-COF delivers a high initial capacity of 110 mAh g−1 with a high capacity retention of 87.3% after 500 cycles. Furthermore, the Li+ diffusion mechanism is also confirmed through in(ex) situ technology and density functional theory calculation in detailing. This new strategy may exploit an important application of COFs in electrochemical energy storage and conversion.  相似文献   

7.
Covalent organic frameworks (COFs) with unique structural merits show substantial potential in the construction of biosensors. However, high-performance COF-based biosensors have rarely been reported due to special requirements for electrochemical biosensing. Here, the ultrathin nitrogen and sulfur-rich bithiazole-based COF nanosheets (COF-Bta-NSs) with the thickness of ≈1.95 nm are developed by using an interfacial perturbation growth strategy, and are further integrated with acetylcholinesterase (AChE) through strong supramolecular interactions to construct a high-performance biosensor for organophosphorus pesticides (OPs) detection. By virtue of the excellent electrical conductivity and abundant edge unsaturated sites of COF-Bta-NSs, such unique biosensors can be used for the detection of various OPs, showing a wide detection range, ultralow detection limit, and high stability. Significantly, the portable biosensing device is further set up based on commercialized screen-printed electrode (SPE), which is sensitive and reliable with the actual samples collected from river water and leafy vegetables, confirming the practical applicability. This research provides a novel insight into the development of advanced COF-based biosensors with excellent performance for biological and environmental analysis.  相似文献   

8.
As a chemical product with rapidly expanding demand in the field of modern energy and environmental applications, hydrogen peroxide (H2O2) has garnered widespread attention. However, the existing industrial production of H2O2 is plagued by high energy consumption, harmful waste emission, and severe safety issues, making it difficult to satisfy the environmental/economic production concept. Artificial photosynthesis offers a viable strategy for green and sustainable H2O2 production since it uses sunlight as an energy source to initiate the reaction of oxygen and water to produce H2O2. Among various photocatalysts, covalent organic frameworks (COFs), featuring highly ordered skeletons and well-defined active sites, have emerged as promising photocatalysts for H2O2 production. This review presents the nascent and burgeoning area of photocatalytic H2O2 production based on COFs. First, a brief overview of photocatalytic technology is provided, followed by a detailed introduction to the principles and evaluation of the photocatalytic H2O2 generation. Subsequently, the latest research progress on the judicious design of COFs for H2O2 photosynthesis is expounded, with a particular emphasis on manipulating the electronic structures and redox active sites. Finally, an outlook on the challenges and future opportunities is proposed, in the hope of stimulating further explorations of novel molecular-designed COFs for sustainable photosynthesis.  相似文献   

9.
The 3D covalent organic frameworks (COFs) have attracted considerable attention owing to their unique structural characteristics. However, most of 3D COFs have interpenetration phenomena, which will result in decreased surface area and porosities, and thus limited their applications in molecular/gas capture. Developing 3D COFs with non-fold interpenetration is challenging but significant because of the existence of non-covalent interactions between the adjacent nets. Herein, a new 3D COF (BMTA-TFPM-COF) with dia topology and non-fold interpenetration for Au ion capture is first demonstrated. The constructed COF exhibits a high Brunauer–Emmett–Teller surface area of 1924 m2 g−1, with the pore volume of 1.85 cm3 g−1. The high surface area and abundant cavities as well as the abundant exposed CN linkages due to the non-interpenetration enable to absorb Au3+ with high capacity (570.18 mg g−1), selectivity (99.5%), and efficiency (68.3% adsorption of maximum capacity in 5 min). This work provides a new strategy to design 3D COFs for ion capture.  相似文献   

10.
Covalent organic frameworks (COFs) are crystalline porous polymers formed by a bottom‐up approach from molecular building units having a predesigned geometry that are connected through covalent bonds. They offer positional control over their building blocks in two and three dimensions. This control enables the synthesis of rigid porous structures with a high regularity and the ability to fine‐tune the chemical and physical properties of the network. This Feature Article provides a comprehensive overview over the structures realized to date in the fast growing field of covalent organic framework development. Different synthesis strategies to meet diverse demands, such as high crystallinity, straightforward processability, or the formation of thin films are discussed. Furthermore, insights into the growing fields of COF applications, including gas storage and separations, sensing, electrochemical energy storage, and optoelectronics are provided.  相似文献   

11.
12.
The synthesis of a new type of redox‐active covalent triazine framework (rCTF) material, which is promising as an anode for Li‐ion batteries, is reported. After activation, it has a capacity up to ≈1190 mAh g?1 at 0.5C with a current density of 300 mA g?1 and a high cycling stability of over 1000 discharge/charge cycles with a stable Coulombic efficiency in an rCTF/Li half‐cell. This rCTF has a high rate performance, and at a charging rate of 20C with a current density of 12 A g?1 and it functions well for over 1000 discharge/charge cycles with a reversible capacity of over 500 mAh g?1. By electrochemical analysis and theoretical calculations, it is found that its lithium‐storage mechanism involves multi‐electron redox‐reactions at anthraquinone, triazine, and benzene rings by the accommodation of Li. The structural features and progressively increased structural disorder of the rCTF increase the kinetics of infiltration and significantly shortens the activation period, yielding fast‐charging Li‐ion half and full cells even at a high capacity loading.  相似文献   

13.
The visible‐light‐driven photocatalytic CO2 reduction is one appealing approach to simultaneously mitigate the energy crisis and environmental issues. It is highly desirable but challenging to selectively and efficiently convert CO2 into desirable products. Herein, a covalent organic framework hosting metalloporphyrin‐based carbon dots (M‐PCD@TD‐COF, M = Ni, Co, and Fe) is first presented, which serves as heterogeneous catalysts for CO2 photoreduction. M‐PCD@TD‐COF not only enriches available COF‐based catalytic materials, but also provides suitable environment for CO2 adsorption and activation on metalloporphyrin‐based carbon dots. The advantages of the host environment in COFs are highlighted by the satisfactory catalytic activity and remarkable selectivity of CO2‐to‐CO conversion over H2 generation up to 98%. The photocatalytic system is effective for both pure CO2 and the simulated flue gas. This work provides new protocols for the rational design of COF‐based heterogeneous catalysts for selective CO2 photoreduction.  相似文献   

14.
Covalent organic frameworks (COFs) show advantageous characteristics, such as an ordered pore structure and a large surface area for gas storage and separation, energy storage, catalysis, and molecular separation. However, COFs usually exist as difficult-to-process powders, and preparing continuous, robust, flexible, foldable, and rollable COF membranes is still a challenge. Herein, such COF membranes with fiber morphology for the first time prepared via a newly introduced template-assisted framework process are reported. This method uses electrospun porous polymer membranes as a sacrificial large dimension template for making self-standing COF membranes. The porous COF fiber membranes, besides having high crystallinity, also show a large surface area (1153 m2 g−1), good mechanical stability, excellent thermal stability, and flexibility. This study opens up the possibility of preparation of large dimension COF membranes and their derivatives in a simple way and hence shows promise in technical applications in separation, catalysis, and energy in the future.  相似文献   

15.
A new colorless electrolyte containing an organic redox couple, tetramethylthiourea (TMTU) and its oxidized dimer tetramethylformaminium disulfide dication ([TMFDS]2+), is applied to dye‐sensitized solar cells (DSCs). Advantages of this redox couple include its non‐corrosive nature, low cost, and easy handling. More impressively, it operates well with carbon electrodes. The DSCs fabricated with a lab‐made HCS‐CB carbon counter‐electrode can present up to 3.1% power conversion efficiency under AM 1.5 illumination of 100 mW·cm?2 and 4.5% under weaker light intensities. This result distinctly outperforms the identical DSCs with a Pt electrode. Corrosive experiments reveal that Al and stainless steel (SS) sheets are stable in the [TMFDS]2+/TMTU‐based electrolyte. Its electrochemical impedance spectrum (EIS) is used to evaluate the influence of different counter‐electrodes on the cell performance, and preliminary investigations reveal that carbon electrodes with large surface areas and ideal corrosion‐inertness toward the sulfur‐containing [TMFDS]2+/TMTU redox couple exhibit promise for application in iodine‐free DSCs.  相似文献   

16.
The insertion of a DNA nanolayer into polymer based solar cells, between the electron transport layer (ETL) and the active material, is proposed to improve the charge separation efficiency. Complete bulk heterojunction donor–acceptor solar cells of the layered type glass/electrode (indium tin oxide)/ETL/P3HT:PC70BM/hole transport layer/electrode (Ag) are investigated using femtosecond transient absorption spectroscopy both in the NIR and the UV–vis regions of the spectrum. The transient spectral changes indicate that when the DNA is deposited on the ZnO nanoparticles (ZnO‐NPs) it can imprint a different long range order on the poly(3‐hexylthiophene) (P3HT) polymer with respect to the non‐ZnO‐NPs/DNA containing cells. This leads to a larger delocalization of the initially formed exciton and its faster quenching which is attributed to more efficient exciton dissociation. Finally, the temporal response of the NIR absorption shows that the DNA promotes more efficient production of charge transfer states and free polarons in the P3HT cation indicating that the increased exciton dissociation correlates with increased charge separation.  相似文献   

17.
Covalent organic frameworks (COFs) containing azobenzene building blocks carry great potential for use in intelligent storage, separation, chemical sensing, and catalysis due to their intriguing photo-responsiveness. However, azobenzene units are often exploited as the linkers to form the framework of COFs, thereby restricting their molecular motion and photoisomerization. Herein, a simple yet robust template-free solvothermal strategy is reported to yield azobenzene-dangled COFs (Azo-COFs) with their azobenzene moieties suspending within the pores. The crystallinity, specific surface area, and morphology of Azo-COFs can be conveniently tailored by changing the ratio of amine to aldehyde monomers. Notably, the Azo-COFs provide sufficient free space for the reversible trans-to-cis isomerization of the dangled azobenzene units inside the pores, thus reversibly regulating surface wettability of Azo-COFs. The adsorption capacity of Azo-COFs toward organic dye molecules is increased by 3.7-fold when irradiated with ultraviolet light, which can be ascribed to the intelligent closing/opening of molecular gates rendered by photoisomerization of azobenzene moieties. As such, the ability to photoregulate the adsorption of Azo-COFs highlights their significance in functioning as smart porous nanomaterials for applications in cargo release, molecular sieves, ion transport, energy conversion systems, and environmental remediation.  相似文献   

18.
A new donor (D)–acceptor (A) conjugate, benzodithiophene‐rhodanine–[6,6]‐phenyl‐C61 butyric acid methyl ester (BDTRh–PCBM) comprising three covalently linked blocks, one of p‐type oligothiophene containing BDTRh moieties and two of n‐type PCBM, is designed and synthesized. A single component organic solar cell (SCOSC) fabricated from BDTRh–PCBM exhibits the power conversion efficiency (PCE) of 2.44% and maximum external quantum efficiency of 46%, which are the highest among the reported efficiencies so far. The SCOSC device shows efficient charge transfer (CT, ≈300 fs) and smaller CT energy loss, resulting in the higher open‐circuit voltage of 0.97 V, compared to the binary blend (BDTRh:PCBM). Because of the integration of the donor and acceptor in a single molecule, BDTRh‐PCBM has a specific D–A arrangement with less energetic disorder and reorganization energy than blend systems. In addition, the SCOSC device shows excellent device and morphological stabilities, showing no degradation of PCE at 80 °C for 100 h. The SCOSC approach may suggest a great way to suppress the large phase segregation of donor and acceptor domains with better morphological stability compared to the blend device.  相似文献   

19.
Covalent organic frameworks (COFs) are promising solid absorbents for the treatment of gaseous iodine. However, extensive efforts are still focused on empirical optimizations of specific binding sites and pore structures in COFs, and the chemical control of gaseous iodine uptake on COFs remains challenging. In this study, the chemically triggered sorption properties of COF-300 for I2 vapors at the single-particle level with the dark-field microscope (DFM) are explored. The present operando single-particle DFM imaging method enables the direct visualization of an adsorption activity transformation from inactive COF-300 to active solvated COF-300 toward gaseous I2 vapors. Exploiting the useful reaction information from time-lapsed DFM images, the tunable adsorption performance of solvated COF-300 is quantitatively compared by various solvents. The results illustrate that the isopropanol (IPA)-solvated COF-300 achieves the optimum adsorption capacity for I2 among the absorbents. The reaction mechanism is elucidated to be the channel size enlargement and modification of internal surface chemistry in the IPA-solvated COF-300, producing a stable I2/IPA-solvated COF-300 complex after the sorption reaction. The present chemical control of the sorption behavior of COF-300 revealed by DFM opens up a new fundamental paradigm for rationally developing high-performance COF-based absorbents for removing I2 vapors.  相似文献   

20.
In organic solar cells, high open circuit voltages may be obtained by choosing materials with a high offset between the donor highest occupied molecular orbital (HOMO) and acceptor lowest unoccupied molecular orbital (LUMO). However, increasing this energy offset can also lead to photophysical processes that compete with charge separation. In this paper the formation of triplet states is addressed in blends of polyfluorene polymers with a series of PCBM multi‐adducts. Specifically, it is demonstrated that the formation of such triplets occurs when the offset energy between donor ionization potential and acceptor electron affinity is ~1.6 eV or greater. Spectroscopic measurements support a mechanism of resonance energy transfer for triplet formation, influenced by the energy levels of the materials, but also demonstrate that the competition between processes at the donor–acceptor interface is strongly influenced by morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号