首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among the extensive development of wearable electronics, which can be implanted onto bodies or embedded in clothes, textile-based devices have gained significant attention. For daily basis applications, wearable energy storage devices are required to be stable under harsh environmental conditions and different deformational conditions. In this study, a textile-based stretchable supercapacitor with high electrochemical performance, mechanical stability, and temperature tolerance over a wide temperature range is reported. It exhibits high areal capacitances of 28.0, 30.4, and 30.6 mF cm−2 at −30, 25, and 80 °C, respectively, while the capacitance remains stable over three repeated cycles of cooling and heating from −30 to 80 °C. The supercapacitor is stable under stretching up to 50% and 1000 repetitive cycles of stretching. A temperature sensor and an liquid-crystal display are simultaneously driven at temperatures between −20 and 80 °C by the supercapacitors. The supercapacitors are woven into a nylon glove power a micro-light-emitting diode stably regardless of the bending of the index finger. Furthermore, the encapsulated supercapacitors retain the capacitance during being immersed in water for a few days. This study demonstrates the potential application of the fabricated supercapacitor as a wearable energy storage device that works under extreme temperature variations, high humidity, and body movements.  相似文献   

2.
3.
Stretchable electrical interconnects based on serpentines combined with elastic materials are utilized in various classes of wearable electronics. However, such interconnects are primarily for direct current or low‐frequency signals and incompatible with microwave electronics that enable wireless communication. In this paper, design and fabrication procedures are described for stretchable transmission line capable of delivering microwave signals. The stretchable transmission line has twisted‐pair design integrated into thin‐film serpentine microstructure to minimize electromagnetic interference, such that the line's performance is minimally affected by the environment in close proximity, allowing its use in thin‐film bioelectronics, such as the epidermal electronic system. Detailed analysis, simulations, and experimental results show that the stretchable transmission line has negligible changes in performance when stretched and is operable on skin through suppressed radiated emission achieved with the twisted‐pair geometry. Furthermore, stretchable microwave low‐pass filter and band‐stop filter are demonstrated using the twisted‐pair structure to show the feasibility of the transmission lines as stretchable passive components. These concepts form the basic elements used in the design of stretchable microwave components, circuits, and subsystems performing important radio frequency functionalities, which can apply to many types of stretchable bioelectronics for radio transmitters and receivers.  相似文献   

4.
Wearable electronics have become an important part of daily lives. However, its rapid development results in the problem of electronic waste (e-waste). Consequently, recyclable materials suitable for wearable electronics are highly sought after. In this study, a conductive recyclable composite (PFBC) is designed based on a dynamic covalently cross-linked elastomer and hierarchical hybrid nanofillers. The PFBC shows excellent wide-ranging properties including processability, elasticity, conductivity, and stability, which are superior to previous materials used for recyclable electronics, and exhibits outstanding mechanical properties and environmental tolerance including high temperature, high humidity, brine, and ethanol owing to its covalent cross-linking. Reversible dissociation of Diels–Alder networks allows for convenient processing and recycling. After three recycles, the toughness of the PFBC remained at 10.1 MJ m−3, which is conspicuous among the reported recyclable electronic materials. Three types of PFBC-based wearable electronics including a triboelectric nanogenerator, a capacitive pressure sensor, and a flexible keyboard, are successfully 3D printed with excellent performance. The PFBC possessed both recyclability and degradability, the combination of which provides a new way to reduce e-waste. This is the first work to recycle electronics using direct 3D printing and presents promising new design principles and materials for wearable electronics.  相似文献   

5.
Thermal management of wearable electronics integrated with biological tissues remains one of the critical challenges for their practical applications. The undesired heating can cause thermal discomfort or even thermal damage to biological tissues. Here, a novel thermal protecting substrate design is proposed for wearable electronics with abilities to manipulate the heat flow and efficiently absorb the excessive heat energy without the compromise of substrate flexibility. The thermal protecting substrate features a functional soft composite, which incorporates the embedded phase change material with a thin metal film on the top in a soft polymer. Compared with conventional substrate, the proposed thermal protecting substrate can reduce the peak temperature increase by over 85% with appropriate parameters. Experimental and numerical studies reveal the fundamental aspects of the design and operation of functional soft composite to effectively avoid excessive heating of biological tissues. Influences of geometrical parameters on temperature reduction are investigated. Device demonstration of thermal protecting substrate in a wearable heater on pig skin illustrates the unusual capability to reduce the maximum skin temperature, thereby enabling practical applications of wearable electronics and creating engineering opportunities in biointegrated applications requiring thermal protection of biological tissues.  相似文献   

6.
Research on transient wearable electronics with stretchable components is of increasing interest because of their abilities to conform seamlessly to human tissues and, more interestingly, disappear from the environment when disposed. To wear them comfortably, their component materials must be pliable, tough, stretchable, biocompatible, and disintegrable. However, most biodegradable materials are not stretchable or tough, limiting their use in transient wearable electronics. Herein, these challenges are addressed by demonstrating a biodegradable nanofiber (NF)-reinforced water-borne polyurethane (NFR-WPU) with stretchability, toughness, and partial biodegradability by embedding biodegradable composite NFs of poly(glycerol sebacate): poly(vinyl alcohol) (PGS:PVA) into the WPU matrix, thus rendering its properties tunable. An optimal loading amount of NFs into the NFR-WPU significantly enhanced the toughness by 19 times while maintaining the Young's modulus as low as 3.3 MPa. Furthermore, the NFR-WPU substrate has very high fracture toughness and shows excellent biocompatibility. Moreover, the NFR-WPU has a disintegration rate nine times greater than that of pristine WPU. Finally, disintegrable and stretchable triboelectric and capacitive touch sensors on the NFR-WPU are fabricated and demonstrated for potential use in transient wearable electronics.  相似文献   

7.
For identifying human or finger movement, it is necessary to sense subtle movements at multiple points, including the local strain and global deformation simultaneously; however, this has not yet been realized. Therefore, a highly stretchable, global, and distributed local strain sensing electrode made of GaInSn and polydimethylsiloxane is developed for wearable devices. To investigate the electrical properties of multiple sections of the GaInSn electrode when stretching, tensile, cyclic, and three‐point‐bending tests are performed. The results demonstrate that the electrode can withstand a strain up to 50% and has little hysteresis without any delay. Moreover, the distributed local strain and global strain can be simultaneously measured using just a single electrode line. Finally, a prototype of a data glove as an application of the strain sensing line is manufactured, and it is demonstrated that the folding state of fingers could be identified. The proposed technology may allow the creation of a lightweight master hand manipulator or 3D data entry device.  相似文献   

8.
Stretchability plays an important role in wearable devices. Repeated stretching often causes the conductivity dramatically decreasing due to the damage of the inner conductive layer, which is a fatal and undesirable issue in this field. Herein, a convenient rolling strategy to prepare conductive fibers with high stretchability based on a spiral structure is proposed. With the simple rolling design, low resistance change can be obtained due to confined elongation nof the gold thin‐film cracks, which is caused by the encapsulated effect in such a structure. When the fiber is under 50% strain, the resistance change (R/R0) is about 1.5, which is much lower than a thin film at the same strain (R/R0 ≈ 10). The fiber can even afford a high load strain (up to 100%), but still retain good conductivity. Such a design further demonstrates its capability when it is used as a conductor to confirm signal transfer with low attenuation, which can also be woven into textile to fabricate wearable electronics.  相似文献   

9.
The interfacing of soft and hard electronics is a key challenge for flexible hybrid electronics. Currently, a multisubstrate approach is employed, where soft and hard devices are fabricated or assembled on separate substrates, and bonded or interfaced using connectors; this hinders the flexibility of the device and is prone to interconnect issues. Here, a single substrate interfacing approach is reported, where soft devices, i.e., sensors, are directly printed on Kapton polyimide substrates that are widely used for fabricating flexible printed circuit boards (FPCBs). Utilizing a process flow compatible with the FPCB assembly process, a wearable sensor patch is fabricated composed of inkjet‐printed gold electrocardiography (ECG) electrodes and a stencil‐printed nickel oxide thermistor. The ECG electrodes provide 1 mVpp ECG signal at 4.7 cm electrode spacing and the thermistor is highly sensitive at normal body temperatures, and demonstrates temperature coefficient, α ≈ –5.84% K–1 and material constant, β ≈ 4330 K. This sensor platform can be extended to a more sophisticated multisensor platform where sensors fabricated using solution processable functional inks can be interfaced to hard electronics for health and performance monitoring, as well as internet of things applications.  相似文献   

10.
Rehabilitation is necessary for the recovery of patients with paralysis caused by stroke and muscle atrophy. Wearable electronics can provide feedback on physical training and facilitate healthcare. However, most existing wearable electronics are difficult to maintain a conformal skin-device interface. Additionally, the use of non-degradable electronic materials is associated with environmental risks. Herein, ionogels with biodegradation and shape-memory properties as eco-friendly and geometry-adaptive wearable electronics for rehabilitation are proposed. The biodegradation is enabled by incorporating polycaprolactone segments into the ionogel matrix. Moreover, the ionogel-based wearable electronics can be conformal to certain joints by shape programming, and provide stable and reproducible real-time signals reflecting joint movements during long-term rehabilitation training assisted by a robotic glove, facilitating carers to assess rehabilitation efficacy and choose an appropriate scheme. This study demonstrates the potential of biodegradable shape-memory ionogels as green and adaptive wearable electronics for robot-assisted rehabilitation.  相似文献   

11.
Graphene is regarded as the ultimate material for future flexible, high‐performance, and wearable electronics. Herein, a novel, robust, all‐green, highly reliable (yield ≥ 99%), and upscalable technology is reported for wearable applications comprising reduced graphene oxide (rGO) as the electroactive component in liquid‐gated transistors (LGTs). rGO is a formidable material for future flexible and wearable applications due to its easy processability, excellent surface reactivity, and large‐area coverage. A novel protocol is established toward the high‐yield fabrication of flexible rGO LGTs combining high robustness (>1.5 h of continuous operation) with state‐of‐the‐art performances, being similar to those of their rigid counterparts operated under liquid gating, including field‐effect mobility of ≈10?1 cm2 V?1 s?1 and transconductance of ≈25 µS. Permeable membranes have been proven crucial to operate flexible LGTs under mechanical stress with reduced amounts of solution (<20 µL). Our rGO LGTs are operated in artificial sweat exploiting two different layouts based on lateral‐flow paper fluidics. These approaches pave the road toward future real‐time tracking of perspiration via a simple and cost‐effective approach. The reported findings contribute to the robust and scalable production of novel graphene‐based flexible devices, whose features fulfill the requirements of wearable electronics.  相似文献   

12.
Smart wearable electronics that are fabricated on light‐weight fabrics or flexible substrates are considered to be of next‐generation and portable electronic device systems. Ideal wearable and portable applications not only require the device to be integrated into various fiber form factors, but also desire self‐powered system in such a way that the devices can be continuously supplied with power as well as simultaneously save the acquired energy for their portability and sustainability. Nevertheless, most of all self‐powered wearable electronics requiring both the generation of the electricity and storing of the harvested energy, which have been developed so far, have employed externally connected individual energy generation and storage fiber devices using external circuits. In this work, for the first time, a hybrid smart fiber that exhibits a spontaneous energy generation and storage process within a single fiber device that does not need any external electric circuit/connection is introduced. This is achieved through the employment of asymmetry coaxial structure in an electrolyte system of the supercapacitor that creates potential difference upon the creation of the triboelectric charges. This development in the self‐charging technology provides great opportunities to establish a new device platform in fiber/textile‐based electronics.  相似文献   

13.
Hydrogel-based soft electronics (HSE) is promising as implantable devices due to the similarity of hydrogel substrates to biologic tissues. Most existing HSE devices are based on conducting hydrogels that usually have weak mechanical properties, low conductivity, and poor patternability. Reported here is an HSE with good mechanical performance, high sensitivity, and versatile functions by stencil printing of liquid metal on a tough hydrogel, facilitating integration of multiple sensing units. Self-shaping ability is imparted to the HSE by creating gradient structure in the hydrogel substrate. The resultant HSE actively deforms into 3D configurations with zero or nonzero Gaussian curvature to fix on objects or organs with sophisticated geometries and maintains the sensing functions. The versatilities and potential applications of this HSE are demonstrated by monitoring motions of a rice field eel and beatings of a rabbit heart. Such HSE based on morphing substrate should pave the way for implantable electronics with better fixation and interfacial contact with the organs. The concept of morphing hydrogel devices can be extended to other soft electronics with responsive polymer films or elastomers as the substrates.  相似文献   

14.
15.
Body integrated wearable electronics can be used for advanced health monitoring, security, and wellness. Due to the complex, asymmetric surface of human body and atypical motion such as stretching in elbow, finger joints, wrist, knee, ankle, etc. electronics integrated to body need to be physically flexible, conforming, and stretchable. In that context, state‐of‐the‐art electronics are unusable due to their bulky, rigid, and brittle framework. Therefore, it is critical to develop stretchable electronics which can physically stretch to absorb the strain associated with body movements. While research in stretchable electronics has started to gain momentum, a stretchable antenna which can perform far‐field communications and can operate at constant frequency, such that physical shape modulation will not compromise its functionality, is yet to be realized. Here, a stretchable antenna is shown, using a low‐cost metal (copper) on flexible polymeric platform, which functions at constant frequency of 2.45 GHz, for far‐field applications. While mounted on a stretchable fabric worn by a human subject, the fabricated antenna communicated at a distance of 80 m with 1.25 mW transmitted power. This work shows an integration strategy from compact antenna design to its practical experimentation for enhanced data communication capability in future generation wearable electronics.  相似文献   

16.
Flexible conductive materials with intrinsic structural characteristics are currently in the spotlight of both fundamental science and advanced technological applications due to their functional preponderances such as the remarkable conductivity, excellent mechanical properties, and tunable physical and chemical properties, and so on. Typically, conductive hydrogel fibers (CHFs) are promising candidates owing to their unique characteristics including light weight, high length-to-diameter ratio, high deformability, and so on. Herein, a comprehensive overview of the cutting-edge advances the CHFs involving the architectural features, function characteristics, fabrication strategies, applications, and perspectives in flexible electronics are provided. The fundamental design principles and fabrication strategies are systematically introduced including the discontinuous fabrication (the capillary polymerization and the draw spinning) and the continuous fabrication (the wet spinning, the microfluidic spinning, 3D printing, and the electrospinning). In addition, their potential applications are crucially emphasized such as flexible energy harvesting devices, flexible energy storage devices, flexible smart sensors, and flexible biomedical electronics. This review concludes with a perspective on the challenges and opportunities of such attractive CHFs, allowing for better understanding of the fundamentals and the development of advanced conductive hydrogel materials.  相似文献   

17.
18.
19.
20.
Miniaturized electronics require integrated unit configuration in very limited space, where energy storage per unit area is thus extremely critical. Micro-supercapacitors (MSCs), mainly established on planar substrates, are superior but still suffer from limited areal capacitance. Herein, a novel strategy is introduced to construct high cross-section MSCs using 3D fabrics as the porous skeleton. Interdigitated poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is patterned on 3D fabrics to achieve continuous conductive networks, while MnO2 microspheres epitaxially grown on PEDOT:PSS are fully exposed to electrolyte with the support of fabric fibers. The unique architecture can utilize more active sites of thick electrodes and the high conductivity of interpenetrating fiber networks. The resulting fabric-based MSCs demonstrate ultra-high areal capacitance of 135.4 mF cm−2, which is 3.5 times that of devices on polyethylene terephthalate substrates and is among the highest values for planar-based MSCs using the same interdigital geometry. Moreover, the flexible fabrics endow MSCs with extremely high bending stability with 94% capacitance retention even after 3000 cycles. These figures-of-merit enable fabric-based MSCs promising to be used in the next-generation of wearable electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号