首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
任姣姣  李丽娟  张丹丹  乔晓利 《红外与激光工程》2018,47(2):225002-0225002(6)
改性聚丙烯(PP)材料由于其阻燃、高抗冲性能等特点被广泛应用在汽车仪表板、保险杠等汽车配件中,采用无损探伤技术对改性PP材料进行检测是汽车配件质量保证的必要手段。搭建了透射式太赫兹时域光谱系统及反射式太赫兹时域光谱成像系统,采用透射式THz-TDS系统对改性PP材料的光学参数进行了检测,测定了该材料在太赫兹波段的折射率,其数值为1.53。设计了一种改性PP材料平底洞样品,采用反射式THz-TDS成像系统对其进行成像,采用了反卷积滤波技术对THz信号进行处理,提高了信号的信噪比,提出了一种基于飞行时间的太赫兹时域光谱层析成像技术,采用已测定的改性PP材料的折射率,通过飞行时间层析成像技术对该样品的太赫兹检测结果进行了三维重构,厚度测量精度为0.01mm。  相似文献   

2.
刘子烨  刘建军  洪治 《激光技术》2016,40(4):496-499
为了将光子混频的连续太赫兹波透射成像系统应用于样品厚度检测中,采用该系统获得的相位信息对样品进行了2维厚度测量。利用两个外腔半导体结构的激光器搭建了基于光子混频的连续太赫兹波透射成像系统,并利用X-Y 2维电动平移台放置样品进行点点扫描成像。该系统可同时获得样品的幅度信息和相位信息,在太赫兹波辐射频率0.47THz时,系统信噪比可达68dB。计算得出的厚度值与实际样品的厚度值最大相差0.02mm;另外还分析了平行平面样品干涉效应和样品不同透射强度对厚度测量的影响。结果表明,样品折射率越高,平行平面干涉效应对厚度测量影响越大;样品透射系数越大,测量精度也越高。当样品太赫兹波透射系数大于0.5时,厚度测量精度优于2.0%。  相似文献   

3.
《红外技术》2015,(9):764-768
复合材料压力容器缺陷无损检测成为目前的研究热点。基于太赫兹技术(透射式THz-TDS系统和BWO成像系统)在室温下对玻璃纤维样品进行无损检测,获得了分层缺陷样品在0.2~1.8 THz范围内的折射率谱和吸收谱、夹杂金属和热损伤缺陷样品的成像数据。结果表明,太赫兹技术对玻璃纤维分层缺陷、夹杂金属和热损伤缺陷检测效果明显,适用于局部检测对整体性能的判断。  相似文献   

4.
利用太赫兹时域光谱成像技术检测了内含缺陷的玻璃纤维与碳纤维增强复合材料,获得了材料内部缺陷的太赫兹透射图像,从而实现对复合材料样本的无损检测。实验结果表明,太赫兹透射成像技术可检测出多层玻璃纤维复合材料的层间缺陷。但该技术对于碳纤维复合材料中缺陷的检测能力有限,主要是因为碳纤维具有导电特性,导致太赫兹信号对其穿透能力有限。通过对成像模式的调节,太赫兹无损检测技术可对碳纤维材料内部深度约为0.2 mm、宽度为10 mm的缺陷进行成像检测。这为发展准确、灵敏、高效的纤维增强复合材料太赫兹无损检测技术提供了基础实验数据。  相似文献   

5.
提出了一种新型的微光学太赫兹辐射探测方法,以双材料微悬臂梁结构热探测方法为基础,通过多重反射光杠杆系统测量微结构的纵向微位移,从而实现太赫兹辐射量的测量。多重反射光杠杆探测方法微位移理论分辨率小于1 nm。搭建了微位移测量系统,实验结果表明,测试系统理论分辨率小于4 nm,实际分辨率优于10 nm。给出了基于该方法的太赫兹探测器设计方案和参数。因其具有良好的抗空气扰动和光束串扰能力,可以在常温下工作,适用于非制冷、实时、低成本、微小型化的太赫兹探测器和阵列式成像设备。  相似文献   

6.
反射式太赫兹返波振荡器成像系统及其应用   总被引:4,自引:0,他引:4  
实现了基于返波管源的太赫兹波反射式成像系统.这是一种新型的无损探伤成像方式.从样品表面或者基底反射回来的太赫兹波被焦热电探测器收集,最后经过计算机处理成像.频率为0.7THz的成像系统被用来对一系列样品进行无损检测,如硬币、徽章、模型飞机以及预埋了人工缺陷的工业样品.结果表明,很多工业材料相对于太赫兹波都是透明的,尤其是一些在航空航天技术中具有广泛应用价值的吸收微波的材料.  相似文献   

7.
主要探讨自然界树叶样本的太赫兹透射成像中的对比度与透射频率的关系。运用透射模式的太赫兹时域光谱系统对样本进行了聚焦逐点式的主动扫描,得到样本各部分的太赫兹波透射率,然后进行数据处理和二维成像。通过对样本在8个不同频率下的太赫兹透射率成像的比对分析,表明样本的不同部分对各个频率的太赫兹波的吸收都有较明显的差别。为了得到更清晰的太赫兹成像,必须选取合适的成像频率使样本成像的对比度更佳,实验发现应该选择透射振幅适中的频段,且在此范围内样品的某些部分具有吸收峰的频率附近进行成像。  相似文献   

8.
太赫兹成像技术的实验研究   总被引:8,自引:0,他引:8  
建立了一套透射式逐点扫描太赫兹(THz)辐射成像装置,它采用<100>-InAs晶体作为高功率、宽频谱的THz辐射源和高灵敏度、低噪声的电光取样差分探测方法,具有对隐蔽在非透明电介质材料内物体成像的能力.并且,系统能够获得成像物体上每一点的光谱数据,可以对物体进行光谱成像.利用多种基于傅立叶变换的数据处理方法给出了葵花籽样品的透射图像,并对其中的几种进行分析和对比.全面介绍透射式逐点扫描THz成像的关键技术,包括成像装置、光束测量、数据处理和分析等几个方面,对有效利用THz成像技术和开展THz成像领域的相关研究具有指导意义.  相似文献   

9.
基于太赫兹气体激光器的连续波成像系统性能分析   总被引:1,自引:0,他引:1  
实现了基于光泵浦远红外气体激光器和高莱管探测器的连续波太赫兹成像.从太赫兹光学器件的选择和配置角度讨论了成像系统的设计和搭建流程.详细测试了系统在信噪比、空间分辨率、探测器响应和成像速度方面的性能指标.利用该系统采集了一系列样品的太赫兹透射图像,实验结果验证了系统的成像效果,揭示出太赫兹成像技术在安全检查和质量控制方面...  相似文献   

10.
太赫兹波近场成像综述   总被引:1,自引:0,他引:1  
太赫兹波成像作为可见光和微波成像等的拓展,在半导体材料表征、生物组织诊断、无损检测和安检等领域表现出许多独特的优点,得到了越来越广泛的关注.传统太赫兹波成像受长波长对应的衍射极限的限制,分辨率较低.而太赫兹波近场成像是目前突破该限制,获得亚微米甚至是纳米量级高分辨图像的研究热点之一.首先介绍了近场机制与成像的基本原理;其次总结了太赫兹波近场成像的几种常用方法及其对应研究进展和当前存在的问题,包括孔径型、针尖型、亚波长太赫兹源型和微纳结构调控型等;最后探讨了该方向的发展趋势.  相似文献   

11.
Ultrasonic ball or wedge bonding of Au or Al has been the traditional method for mak-ing electrical interconnects between die and chip header for most Integrated Circuit (IC) and microsensor devices. Electrical interconnections made from these materials may, however, be unsuitable for some device applications. Some microsensors (e.g., oxygen exhaust gas sensors) can be subject to temperatures as high as 900° C in both oxidizing and reducing atmospheres, conditions for which the properties of Au or Al are unsuit-able. In this report we describe a new means of making electrical connections between die and chip header. Interconnects are made by using a conventional wire bonder to ultrasonically wedge bond 0.032 mm diameter Pt wires to both Pt and Al thin films. Interconnects made in this manner are remarkably strong, as compared with Au wire bonds, with pull strengths of ∼13 g. Electrical measurements show contact resistances of ≲0.05 Ω. Annealing tests show that bonds made to thin metal films of Pt on Ti on sapphire show no appreciable signs of electrical or mechanical degradation after an-neals at 900° C for 1 h in pure oxygen.  相似文献   

12.
In our previous studies, thin Ti-rich layers were found to uniformly cover SiO2/Si substrate surfaces at the interface with Cu(Ti) alloy films after annealing at elevated temperature. These Ti-rich layers were also found to prevent intermixing between the Cu(Ti) alloy films and the substrate, resulting in a simple barrier formation technique, called “self-formation of the diffusion barrier,” which is attractive for fabrication of ultra-large scale integrated (ULSI) interconnect structures. In the present study, to understand the mechanism of self-formation of the Ti-rich barrier layers on the substrate surface, the effects of SiO2/Si, SiN/SiO2/Si and NaCl substrate materials on the interfacial microstructure were investigated. The microstructures were analyzed by transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS), and correlated with the electrical properties of the Cu(Ti) interconnects. It was concluded that the chemical reaction of Ti with the substrate materials was essential for the self-formation of the Ti-rich layers.  相似文献   

13.
CuInSe2 was fabricated via mechanical milling of Cu, In, Se and self-propagating high temperature synthesis (SHS). The latter materials were thermally evaporated to obtain nanostructured thin films. The ball milled powders are obtained using a rotational disk speed of 300 rpm and a milling time of 15 and 30 min. On the other hand, the SHS process was carried out on the mixed cold pressed powder of Cu, In and Se, owing to a graphite plate heated by a high intensity electrical current. The investigated materials were analyzed by X-ray diffraction. They exhibited a chalcopyrite like-structure. Rietveld method combined with Fourier analysis using Maud program was exploited to fit X-ray diffraction data. The chemical bounding is studied by X-ray photoelectron spectroscopy (XPS). SEM analysis revealed that the obtained thin films were nanostructured.  相似文献   

14.
Sol-gel preparation of transparent conducting ZnO/Cu/ZnO multilayer thin films has been investigated. CuO thin films were deposited on glass substrates via a dip-coating method. The CuO thin films were further subjected to reductive annealing in hydrogen to form highly conductive Cu thin films with sheet resistances as low as 10 Ω/□. ZnO/Cu/ZnO multilayers were successfully prepared in a similar way by reducing ZnO/CuO/ZnO. The sheet resistance of the ZnO/Cu/ZnO multilayer thin films is about 10 kΩ/□, which is much higher than that of the pure Cu thin films. The formation of large discrete Cu crystallites in the multilayers explains the poor electrical conductivity of the sol-gel-derived ZnO/Cu/ZnO multilayers.  相似文献   

15.
Fabrication of CNTs/Cu composite thin films for interconnects application   总被引:1,自引:0,他引:1  
Carbon nanotubes/copper (CNTs/Cu) composite thin films were fabricated by combined electrophoresis and electroplating techniques. Electrical properties and structure of both CNTs/Cu thin films and the reference pure Cu thin films were investigated after annealing at different temperatures. The sheet electrical resistance of CNTs/Cu films decreases faster than that of pure Cu films with increase of annealing temperature. The grain size of CNTs/Cu film becomes much larger than that of pure Cu film at the same annealing temperature. The peak relative intensity of Cu (1 1 1) plane in CNTs/Cu film was stronger than that of pure Cu film. CNTs/Cu composite thin films, with better electrical properties than that of conventional pure Cu thin films, have been fabricated by electrophoresis and electroplating deposition techniques.  相似文献   

16.
Cu‐nanowire‐doped graphene (Cu NWs/graphene) is successfully incorporated as the back contact in thin‐film CdTe solar cells. 1D, single‐crystal Cu nanowires (NWs) are prepared by a hydrothermal method at 160 °C and 3D, highly crystalline graphene is obtained by ambient‐pressure CVD at 1000 °C. The Cu NWs/graphene back contact is obtained from fully mixing the Cu nanowires and graphene with poly(vinylidene fluoride) (PVDF) and N‐methyl pyrrolidinone (NMP), and then annealing at 185 °C for solidification. The back contact possesses a high electrical conductivity of 16.7 S cm?1 and a carrier mobility of 16.2 cm2 V?1 s?1. The efficiency of solar cells with Cu NWs/graphene achieved is up to 12.1%, higher than that of cells with traditional back contacts using Cu‐particle‐doped graphite (10.5%) or Cu thin films (9.1%). This indicates that the Cu NWs/graphene back contact improves the hole collection ability of CdTe cells due to the percolating network, with the super‐high aspect ratio of the Cu nanowires offering enormous electrical transport routes to connect the individual graphene sheets. The cells with Cu NWs/graphene also exhibit an excellent thermal stability, because they can supply an active Cu diffusion source to form an stable intermediate layer of CuTe between the CdTe layer and the back contact.  相似文献   

17.
The functionalities and applications of oxide thin films are highly dependent on their thickness. Most thickness-dependent studies on oxide thin films require the preparation of independent samples, which is labor-intensive and time-consuming and inevitably introduces experimental errors. To address this challenge, a general strategy based on high-throughput pulsed laser deposition technology is proposed to precisely control the thin-film thickness in local regions under similar growth conditions. The as-proposed synthesis strategy is demonstrated using typical complex oxide materials of SrTiO3 (STO). Consequently, high-throughput STO thin films with nine gradient thicknesses ranging from 10.1 to 30.5 nm are fabricated. Notably, a transition from the unipolar to the bipolar resistive switching mode is observed with increasing STO thickness. Moreover, a physical mechanism based on the heterostructure-mediated redistribution of oxygen vacancies is employed to interpret the transition between the two memristive patterns. The screening of STO thin films with different resistive switching behaviors revealed that the STO thin film with a thickness of 20.3 nm exhibit excellent conductance modulation properties under the application of electrical pulses as well as significant reliability for the emulation of various synaptic functions, rendering it a promising material for artificial neuromorphic computing applications.  相似文献   

18.
Formation of Ti diffusion barrier layers in Thin Cu(Ti) alloy films   总被引:1,自引:0,他引:1  
In order to study a formation mechanism of thin Ti-rich layers formed on the surfaces of Cu(Ti) wires after annealing at elevated temperatures, the 300-nm-thick Cu(Ti) alloy films with Ti concentration of 1.3 at.% or 2.9 at.% were prepared on the SiO2/Si substrates by a co-sputter deposition technique. The electrical resistivity and microstructural analysis of these alloy films were carried out before and after annealing at 400°C. The Ti-rich layers with thickness of ∼15 nm were observed to form uniformly both at the film surface and the substrate interfaces in the Cu(2.9at.%Ti) films after annealing (which we call the self-formation of the layers) using Rutherford backscattering spectrometry (RBS) and transmission electron microscopy (TEM). Both the resistivities and the microstructures of these Cu(Ti) films were found to depend strongly on the Ti concentrations. The resistivities of the films decreased upon annealing due to segregation of the supersaturated Ti solutes in the alloy films to both the top and bottom of the films. These Ti layers had excellent thermal stability and would be applicable to the self-formed diffusion barrier in Cu interconnects of highly integrated devices. The selection rules of the alloy elements for the barrier self-formation were proposed based on the present results.  相似文献   

19.
In our previous studies, thin Ti-rich diffusion barrier layers were found to be formed at the interface between Cu(Ti) films and SiO2/Si substrates after annealing at elevated temperatures. This technique was called self-formation of the diffusion barrier, and is attractive for fabrication of ultralarge-scale integrated (ULSI) interconnects. In the present study, we investigated the applicability of this technique to Cu(Ti) alloy films which were deposited on low dielectric constant (low-k) materials (SiO x C y ), SiCO, and SiCN dielectric layers, which are potential dielectric layers for future ULSI Si devices. The microstructures were analyzed by transmission electron microscopy (TEM) and secondary-ion mass spectrometry (SIMS), and correlated with the electrical properties of the Cu(Ti) films. It was concluded that the Ti-rich interface layers were formed in all the Cu(Ti)/dielectric-layer samples. The primary factor to control the composition of the self-formed Ti-rich interface layers was the C concentration in the dielectric layers rather than the enthalpy of formation of the Ti compounds (TiC, TiSi, and TiN). Crystalline TiC was formed on the dielectric layers with a C concentration higher than 17 at.%.  相似文献   

20.
Fe、Co基合金薄膜具有高磁导率、高损耗等特点,可实现微波的宽频带吸收,是一类具有很大发展潜力的新一代吸波材料。磁性膜的复磁导率对吸波性能有重大影响,因而在吸波材料研究中提出了磁谱测量的紧迫要求。综述了国内外磁性薄膜电磁参数微波测量方法,主要介绍了磁性薄膜电磁参数的谐振腔法、双线圈法和传输线法,并对当前研究中存在的问题进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号