首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
超分辨显微成像技术是细胞生物学中研究细胞器结构、相互作用和蛋白质功能的强大工具,其具有突破光学衍射极限的分辨能力,从纳米尺度上为细胞生物学提供了新的分析手段,对生命科学相关领域具有重大意义.然而,受衍射极限的影响,超分辨显微镜的轴向分辨率相比于横向分辨率要更难以提高,这导致实现细胞结构亚百纳米分辨率的三维成像更为困难.从受激辐射损耗显微术和单分子定位显微术这两种主流技术出发,对目前存在的多种三维成像技术进行了原理介绍和特点分析,最后对其未来发展方向进行了展望.  相似文献   

2.
细胞是生命体的基本单位和功能单位,对活细胞内部结构及其功能的研究是了解掌握生命本质的基础之一,因此活细胞的实时观测对生命科学的发展具有重要意义。传统的光学显微技术受衍射极限的限制,无法观测200 nm以下的生物结构细节。近20年来,随着超衍射极限光学理论、技术、器件和荧光探针等方面的快速发展,超分辨显微成像技术已成为应用于生命科学研究的重要手段。然而,大多数超分辨显微方法或测量耗时长,或易引起荧光蛋白漂白/细胞损伤,在活细胞研究中受到极大限制,已成为超分辨显微领域重点攻关的方向之一。为此,文中结合作者在快速超分辨显微技术研究的基础上,介绍了基于单分子成像的光激活定位显微技术和随机光学重构显微技术、基于荧光非线性可饱和光转换的受激发射显微技术以及基于结构光照明的超分辨显微技术,并探讨了在活细胞成像中的发展应用。最后,文中展望了超分辨显微成像技术在活细胞成像中的未来发展趋势。  相似文献   

3.
胡春光  李恩赐  翟聪  高晓晴  陈雨露  郭梦迪 《红外与激光工程》2022,51(6):20210438-1-20210438-14
光学显微镜是人类探索微观世界的重要工具,在生物学、医学、材料学、精密测量学等领域发挥重要作用。由于衍射极限的存在,发展更高质量、更高空间分辨率的超分辨光学显微成像技术成为当下研究的前沿热点。基于微球透镜的超分辨显微成像技术有着易于实现、简单直接和免标记的显著优点,发展潜力巨大。但是单个微球的视野有限,且难以进行精确定位。提高微球的可操控性,拓展超分辨显微成像视场的范围,已成为该技术突破发展的核心关键。文中在介绍微球超分辨的成像原理,分析影响成像质量主要因素的基础上,重点总结了国内外团队在拓展微球透镜超分辨显微成像视场方面的最新研究进展。根据微球的操控方式,将研究工作总结为机械接触控制、微球辅助增强层、非接触控制和微球物镜一体化四类进行介绍,探讨其技术特点,并对大视场成像、图像拼接等面向视场拓展的图像处理技术进行论述。最后,提出微球透镜超分辨显微成像技术亟待解决的关键问题、存在的难点与挑战,以及未来开展研究工作的突破点,展望了该技术的发展与应用拓展方向。  相似文献   

4.
杨建宇  潘雷霆  胡芬  张心正  许京军 《红外与激光工程》2017,46(11):1103008-1103008(8)
在光学显微成像领域,涌现出一批可以突破衍射极限的超分辨显微成像技术,极大地增强了人们研究亚细胞结构的能力。基于单分子定位技术的随机光学重构显微术(Stochastic Optical Reconstruction Microscopy,STORM)具有易懂的成像原理、简单的工作方式以及超高的分辨率等特点,受到越来越多的研究者青睐。首先,介绍了单分子定位技术的原理,讨论了STORM光路的搭建,阐述了二维和三维STORM超分辨显微成像原理。其次,探讨了多色STORM以及STORM与电镜关联成像现状。最后介绍了STORM技术现阶段的应用进展。  相似文献   

5.
超分辨显微成像技术自诞生以来,凭借其优异的纳米级空间分辨率,已成为生命科学研究中精准揭示复杂生命现象的重要成像技术。其中,基于单分子定位的超分辨成像策略,使得定位、观察、研究单个探针分子独特的理、化、光学性能成为可能。偏振作为荧光信号的一个重要特性,近年来伴随着单分子三维取向成像技术的发展,逐步在单分子成像和超分辨领域中展示出诸多新颖且重要的应用特性。本文总结了单分子三维取向超分辨成像技术的最新进展,介绍并分析了两类主要的单分子三维取向荧光显微技术——基于荧光吸收与辐射偏振调制的单分子三维取向成像方法以及利用点扩散函数工程将单个荧光分子的三维取向信息编码到荧光图像上的成像策略。此外,还探讨了应用于活细胞或单颗粒的其他类型的超分辨取向成像技术。最后,针对单分子三维取向超分辨成像技术发展与应用前景面临的挑战,进行了总结与展望。  相似文献   

6.
魏通达  张运海  杨皓旻 《红外与激光工程》2016,45(6):624001-0624001(6)
受激辐射损耗显微成像(STED)是一种超分辨荧光显微成像技术,它能够突破传统光学衍射极限的限制,把远场光学分辨率提高到百纳米以内,被广泛应用于生物医学等领域,是目前光学显微成像领域研究的热点之一。采用了一种基于超连续谱皮秒脉冲白激光光源的STED显微系统,实现超分辨成像。并从精密合束、脉冲延迟和损耗光残留光强几个方面探讨系统优化,从而获得最佳的成像效果。对直径约25 nm荧光微球成像实验的数据表明:该系统成像分辨率可达约60 nm,分辨能力远远高于衍射极限。另外,系统成功实现了对核孔复合物、微管和微丝等一系列生物样品的超分辨成像,共聚焦成像中某些模糊不清的结构在STED成像中清晰可辨。  相似文献   

7.
由于衍射极限的存在,传统的光学成像手段无法观测细胞器结构及细胞器之间的相互作用。单分子定位显微成像技术作为三种超分辨技术中分辨率最高的成像技术,为生命科学领域的研究提供了重要手段。大视场高通量单分子成像技术具有分辨率高、成像范围大和成像时间短等特点,在生物医学领域广泛用于观察和分析复杂的生物结构和功能。从基于硬件扫描的拼接成像技术、基于大面阵sCMOS的大视场高通量成像技术、大景深单分子定位成像技术、高通量数据分析技术4个方面回顾近年来大视场高通量单分子定位技术的研究进展。最后,对大视场高通量单分子定位成像技术的发展方向进行展望。  相似文献   

8.
超分辨荧光显微镜突破了光学衍射极限造成的空间分辨率限制,使得生物学家能够在生命体和细胞具有活性的状态下,对其功能与结构进行高精度动态记录,有望揭示更多重要的生命现象细节。然而,由于超分辨荧光显微技术的成像视场、深度、分辨率、速度等不易兼得,所以解卷积作为一种最有效且直接的求解逆问题的框架,被广泛应用于增强超分辨显微镜的时空分辨率。研究人员聚焦于通过相应算法设计实现高质量显微图像的重建,在一定程度上克服了超分辨荧光显微镜的硬件限制,可以更好地恢复生物信息。本文首先介绍了解卷积方法的基本原理及其发展历程,接着列举了不同解卷积技术在不同模态下的重建原理和效果以及这些技术在生物学上的应用,最后总结了基于深度学习的解卷积方法在超分辨荧光显微镜技术上的最新进展和未来的发展潜力,并对包括傅里叶环相关的定量评估图像重建质量的方法的最新进展进行了阐述。  相似文献   

9.
阵列式共焦显微系统超分辨特性的研究   总被引:1,自引:0,他引:1  
针对光学阵列共焦显微系统中存在分辨力的下降,提出引入一种新型三区振幅型光瞳滤波器以提高其三维探测能力。首先根据基尔霍夫衍射理论推导出光学阵列共焦显微系统三维相干成像公式,与现有理论相比,能更准确地定量描述共焦阵列成像过程,进而将共焦阵列显微技术和光学超分辨技术有机结合,利用三维超分辨评价函数对光瞳滤波器的参数进行优化设计,通过压缩各探测光路的横向和轴向半极值宽(HWHM),以提高其三维扫描探测能力,从而为实现快速、超精密三维测量提供了一种有效的技术途径。  相似文献   

10.
太赫兹(THz)近场成像是突破光学衍射极限实现太赫兹超分辨成像的重要方法,对研究材料表面的超快动力学过程具有重要的意义。扫描隧道显微镜(STM)是一种能实现原子级分辨的设备,但引入时间尺度,面临诸多困难。早期从STM固有电学方法发展的时间分辨方法的分辨率受限于电信号传输带宽,基于光信号耦合的泵浦探测方法则面临微带线传输带宽和严重的热效应等限制。在此背景下,THz-STM以低热效应、高隧穿效率、高稳定性等独有的优势为实现100 fs量级和0.1 nm级超高时空分辨成像提供了解决方案,成为太赫兹近场超分辨成像的研究热点。介绍时间分辨STM到THz-STM的发展历史,着重介绍THz-STM的基本原理和现状,为了解THz-STM技术在太赫兹近场超分辨成像中的应用和发展提供了思路。  相似文献   

11.
光电成像系统受到衍射极限和像元分辨率的制约,但研究者们从未停止过脚步来突破这一限制。本文介绍了近年来开展的各种超分辨成像方法和技术,包括应用于荧光显微成像的受激发射损耗技术、结构光照明技术、光激活定位技术与随机光学重构超分辨成像技术;可应用于显微系统、光存储与眼底成像的光瞳滤波技术与径向偏振光超分辨聚焦技术;应用于空间探测的合成孔径技术、光子筛成像技术、超振荡透镜技术、亚像元技术与焦平面编码技术。主要讨论了以上超分辨方法的原理、实现手段与目前发展水平。  相似文献   

12.
Lysosomes and mitochondria play an important role in maintaining cell homeostasis. Visualizing the long-term activities of lysosomes and mitochondria on the nanometer scale in live cells is essential for further understanding their functions but remains challenging due to the limitations of existing fluorescent probes, such as aggregation-caused quenching (ACQ) effect, limited signal-to-noise ratio from fluorescence “always on” in the process of targeting organelle and poor photobleaching resistance. Herein, two efficient red-emitting aggregation-induced emission (AIE) luminogens are reported, which showed “off-on” fluorescence characteristic and specific lysosomes as well as mitochondria targeting capability. Owing to their AIE characteristics, a Stokes’ shift larger than 100 nm, good biocompatibility, and excellent photostability, the AIE luminogens have been successfully utilized for high fidelity imaging of lysosomes and mitochondria. By virtue of these two probes, stimulated emission depletion (STED) images of dynamic lysosomal fusion and mitochondrial fission with a high resolution of 65.6 nm are obtained. Furthermore, the interactions between lysosomes and mitochondria in the process of mitophagy are recorded. This study also provides practical guidance for designing specific organelle targeting probes to support live cell dynamic super-resolution imaging.  相似文献   

13.
由于具有低光毒性、高速宽视场以及多通道三维超分辨成像能力,超分辨结构照明显微术(SR-SIM)特别适合用于活细胞中动态精细结构的实时检测研究。超分辨结构照明显微图像重建算法(SIM-RA)对SR-SIM的成像质量具有决定性影响。本文首先简要介绍了超分辨显微术的发展现状,阐述了研究SR-SIM图像重建算法的必要性;然后介绍了SR-SIM的成像原理,并重点介绍了SR-SIM图像重建算法,包括SR-SIM中频繁使用的去卷积重建算法、SR-SIM校准与重建过程中参数值获取的算法,以及目前发展的超分辨结构照明显微图像重建算法,并介绍了SR-SIM工具箱;最后总结了当前发展超分辨结构照明显微图像重建算法需解决的5个问题。  相似文献   

14.
为了发展能够同时兼顾超分辨、快速成像和视场的荧光显微镜, 以促进其在活细胞或微观动态过程成像的应用, 将压缩感知应用到超分辨荧光显微镜中, 利用投影梯度稀疏重构算法对单帧荧光宽场图像重构, 并进行了理论分析、仿真和实验验证。结果表明, 该方法能够突破光学衍射极限, 成像分辨率达到180nm, 相比衍射极限提高1.8倍。此结果说明压缩感知能够实现单帧宽场超分辨荧光显微成像, 相比现有的方法在成像速度上有巨大的提升。  相似文献   

15.
随着科学技术的快速发展,荧光显微镜成像在生物医学领域的应用越来越广泛.常见的荧光显微镜大致可分为普通荧光显微镜、激光扫描共聚焦显微镜、超分辨率显微镜和多光子激光扫描显微镜.本文详述了几种常见显微镜的原理、特性及其在生物医学中的应用.  相似文献   

16.
叶燃  徐楚  汤芬  尚晴晴  范瑶  李加基  叶永红  左超 《红外与激光工程》2022,51(2):20220086-1-20220086-13
微球超分辨显微成像技术能够突破衍射极限并成倍提高传统光学显微镜的成像分辨率。因其具有成像系统简单,可实时成像,无需荧光染料标记,能在白光照明条件下工作,且可与市场上成熟的显微镜产品相兼容等优点,具有重要研究价值与广阔应用前景,发展潜力巨大。该技术发展至今已取得了众多令人瞩目的研究成果,但现阶段的研究主要集中在微球超分辨成像规律、成像质量的提高、微球的操控方法上。而针对微球透镜的超分辨成像机理与模型,目前尚未形成完善统一的认知与可靠一致的解释。在此背景下,文中梳理归纳了微球透镜近场聚焦及远场成像机理、数学模型、仿真技术等方面的研究工作,分析现有工作的意义与所存在的不足,指出该领域需要着重解决的问题,并对微球成像技术未来的发展方向给予展望。  相似文献   

17.
张泽宇  范瑶  徐钦  陈雨舟  孙佳嵩  陈钱  左超 《红外与激光工程》2022,51(2):20220095-1-20220095-36
计算光学显微成像技术将光学编码和计算解码相结合,通过光学操作和图像算法重建来恢复微观物体的多维信息,为显微成像技术突破传统成像能力提供了强大的助力。这项技术的发展得益于现代光学系统、图像传感器以及高性能数据处理设备的优化,同时也被先进的通信技术和设备的发展所赋能。智能手机平台作为高度集成化的电子设备,具有先进的图像传感器和高性能的处理器,可以采集光学系统的图像并运行图像处理算法,为计算光学显微成像技术的实现创造了全新的方式。进一步地,作为可移动通信终端,智能手机平台开放的操作系统和多样的无线网络接入方法,赋予了显微镜灵活智能化操控能力与丰富的显示和处理分析功能,可用于实现各种复杂环境下多样化的生物学检测应用。文中从四个方面综述了基于智能手机平台的计算光学显微成像技术,首先综述了智能手机平台作为光学成像器件的新型显微成像光路设计,接下来介绍了基于智能手机平台先进传感器的计算光学高通量显微成像技术,然后介绍了智能手机平台的数据处理能力和互联能力在计算显微成像中的应用,最后讨论了这项技术现存在的一些问题及解决方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号