首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
松南气田因CO2含量较高,其天然气水合物形成温度较高,井筒及地面集输系统在冬季生产过程中极易形成天然气水合物,严重影响安全生产。为此,分析了高含二氧化碳气井集输系统发生天然气水合物堵塞的原因,在现有集输系统适应性分析的基础上,结合天然气水合物形成的边界条件,提出了高含二氧化碳气井集输系统天然气水合物的防治措施:清洗井底脏物和天然气水合物;站场设备采用水套炉和电伴热加热,应用聚氨酯硬质泡沫塑料保温材料进行绝热保温;集输管线加注天然气水合物抑制剂;完善外输气管线加药流程;合理控制单井气管输温度;制定合理的清管周期。  相似文献   

2.
针对苏里格气田冬季因气温较低而出现的气井井下油套管和地面输气管线容易形成水合物的问题,从天然气水合物的物化性质出发,对生成水合物的成因进行分析,其成因条件主要有热力学条件和动力学条件两个方面,水分和烃类物质是形成水合物的先决条件。分析了气井井筒和输气管线防治水合物的措施,井下节流器的应用对井筒水合物的形成有较好的防治效果,对天然气进行脱水使天然气不满足形成水合物的水分这个先决条件,提高管道的工况条件主要是提高管道内天然气流动温度、降低管道压力、添加抑制剂,可防止管道中水合物的形成。提出了水合物防治技术的研究方向。  相似文献   

3.
胡德芬  侯梅  徐立  何敏 《天然气工业》2010,30(10):78-82
高含硫气井因H2S含量较高,其天然气水合物形成温度较高,井筒及地面集输系统在冬季生产过程中极易形成天然气水合物,严重影响安全生产。为此,分析了高含硫气井集输系统发生天然气水合物堵塞的原因,在现有集输系统适应性分析的基础上,结合天然气水合物形成的边界条件,提出了高含硫气井集输系统天然气水合物的防治措施:井筒加注防冻剂或解堵剂;清洗井底脏物和天然气水合物;站场设备采用水套炉和电伴热加热,应用聚氨酯硬质泡沫塑料保温材料进行绝热保温;集输管线加注天然气水合物抑制剂;进行集输系统适应性改造;合理控制计量温度;制订合理的清管周期。  相似文献   

4.
天然气水合物是由水和天然气在一定的温度和压力条件下形成的结晶化合物。气井带压作业过程中井筒内、井口防喷器及泄压阀处易形成天然气水合物,一旦形成可能导致难以处理的工程复杂情况,包括带压起管柱投堵时影响内密封效果、造成管柱上提下放时发生阻卡、导致环空密封压力失控等,尤其在气温较低时,因水合物导致的安全风险愈发突出。为降低气井带压作业中水合物带来的安全风险,从天然气水合物形成原因出发,结合现场实际分析气井带压作业中水合物形成的主要位置及影响,并根据现场试验及理论分析提出预防措施:①向入井管柱内注入水合物抑制剂或向环空内注入水合物抑制剂;②通过降低井筒压力至水合物形成压力以下,改变天然气水合物稳定的相平衡状态,促使水合物发生分解;③带压作业期间通过增大气井产量提高井筒温度;④使用蒸汽管线缠绕在防喷器及泄压管线上进行加热或优化带压作业补泄压系统。该措施能有效预防气井带压作业中天然气水合物的形成,为气井带压作业中水合物的预防提供有力的技术支持。  相似文献   

5.
喇嘛甸油田泡沫复合试验驱天然气注入系统采用单台压缩机对应单井的连续注入工艺。压缩机冷凝器、注入管线及井口冻堵是由于注气温度低和注气压力高形成水合物造成的。室内研究确定了注气温度与注气压力关系曲线,并通过现场试验得到了验证。通过应用电热保温技术,控制天然气在注入管线及井口温度达到形成水合物结晶以上的温度以防水合物的生成,有效地避免了冻堵。  相似文献   

6.
气井井口温度较低时井筒内易生成水合物,为了避免测试时冻堵井下油管事故的发生,设计了与现场数采设备相配合的实时监测预警系统。以井口附近地面管线监测点实时传输的压力、温度及流量数据为依据,应用井筒多相流理论计算气井沿程压力温度分布,与图解法所形成的天然气水合物P-T图相比较,进而判断是否达到水合物生成条件,并计算可能存在水合物的井段,由此进行报警并采取及时的预防措施。系统中包含了所涉及开井与关井井筒压力温度计算、天然气水合物生成预测、预警预防设置3部分。编制的软件经现场实践可达到实时监测的目的。最后,给出在集成化实时监控下预防气井水合物的对策。  相似文献   

7.
天然气水合物是天然气与水在一定的温度和压力下形成的一种冰状笼形化合物。在气井生产过程中.一旦压力、温度条件满足,天然气混合物中的某些气体组分便会与水形成水合物。堵塞油管或井口集输管线。作者通过对气井水合物形成条件的分析.具体介绍了对各种水合物的预防和解堵措施。  相似文献   

8.
《石油机械》2016,(10):84-89
通常采用的水合物预防方法有注入抑制剂、井下节流、采用重力热管或注入热流体等。为分析其应用于深水气井井筒时的适用性和高效性等,开展了深水气井井筒天然气水合物预防方法的比较研究,比较分析了注抑制剂、采用重力热管和井下节流等方法抑制水合物生成的机理。抑制剂直接阻碍水合物的成核和生长,重力热管法与井下节流法则是通过调节井筒温度和压力分布,使其不具备水合物生成条件。利用改进的双流体模型计算井筒内温度和压力分布,以南海东部某深水气井设计资料为基础,比较分析了此3种方法对天然气水合物生成区域的影响规律。分析结果表明:注入抑制剂后,在低浓度范围内,随浓度增加初始生成位置呈小幅上升趋势;在高浓度范围内,随浓度增加初始生成位置大幅度上升;在热流体注入口附近,井筒流体温度出现突变,并随注入量增加与注入温度升高而升高;高产量下,井下节流使水合物生成区域增大;低产量下,节流后水合物生成区域减小。研究结果可为深水气井井筒流动安全保障设计提供参考。  相似文献   

9.
气井井下节流降压工艺方法探讨   总被引:8,自引:0,他引:8  
结合气井生产特点,对汪家屯气田水合物的生成机理及产生规律进行了研究,阐述了水合物形成机理,即天然气水合物是天然气中的水和气体在低温高压下的产物,其形成与天然气组分和地层水的矿化度、温度和压力有关。为探索新的水合物的预防技术,在易形成水合物气井上,开展了井下节流防治水合物工艺试验,其原理是将地面气嘴移到井下产层上部油管内,使天然气的节流降压膨胀过程发生在井内。通过井下油嘴节流、降温后的天然气仍可吸收地层温度,降低井筒内天然气压力,提高采出天然气的井口温度,破坏水合物的生成条件,达到防止水合物生成的目的。  相似文献   

10.
气井油管中水合物的形成及预测   总被引:4,自引:0,他引:4  
天然气水合物是天然气与水在一定的温度和压力下形成的一种冰状笼形化合物。在气井测试与生产系统中,一旦压力、温度条件满足,天然气混合物中的某些气体组分便与水形成水合物,堵塞油管或井口集输管线。研究分析了气井油管中水合物形成的规律,提出了预测水合物形成趋势和可能位置的方法及预防措施。  相似文献   

11.
针对页岩气井排液生产期内的水含量很高,井口及下游管线可能出现堵塞现象,采用HYSYS软件对页岩气井口多工况进行水合物形成预测,发现在正常生产初期关井后重新开井和高气水比时,可能会出现水合物.并对目前页岩气田采用的注醇工艺和加热工艺进行了适应性分析.结果发现,加热工艺的总投资成本略高于注醇工艺,但是加热工艺的处理量范围较...  相似文献   

12.
含硫气藏天然气水合物生成预测及防治   总被引:2,自引:0,他引:2  
戚斌 《天然气工业》2009,29(6):89-90
在川东北含硫气藏的勘探开发过程中,天然气水合物冰堵一直是影响开发进程的一个问题。其预测与防治是急需解决的难题,而目前在国内关于这方面的研究却很少,仅有的方法也只是针对一般气井,而对于含硫气井的预测结果偏差就很大。通过现场实践研究,采用分子热力学模型法进行计算,分析得到了压力、组分等对天然气水合物温度的影响,尤其是硫化氢的存在对天然气水合物形成的影响,为含硫气藏天然气水合物的防治提供了依据,并在天然气水合物形成温度预测的基础上,结合河坝1井的实际情况进行了水套炉型号的优选。实践证明:利用该方法预测的天然气水合物生成温度和预防方法是准确、可靠的。  相似文献   

13.
川西北地区超高压含硫气井安全地面集输工艺   总被引:3,自引:0,他引:3  
四川盆地西北部地区超高压气藏富含硫化氢和二氧化碳,对地面集输工艺的安全性要求极高,其中双探1井为川西北地区典型的超高压含硫气井,是目前国内投入试采井口压力最高(104 MPa)的气井,其安全试采的关键是节流降压和防止天然气水合物形成。为此,以该井为先导,创新建立了超高压含硫气井的地面集输工艺流程:(1)考虑冲蚀腐蚀的影响,按照等压设计思路,设计了高压多级节流橇;(2)提出了地面一级加热+天然气水合物抑制剂+移动蒸汽加热的天然气水合物防治技术;(3)形成了地面安全控制技术,建立了安全等级最高的超高压井口安全系统,保障了气井的安全生产;(4)针对气田产水和高含硫化氢的特点,提出了气液分离+脱硫+缓蚀剂+清管的防腐措施。该配套技术工艺对超高压含硫气井地面集输工艺的研究和试验具有典型性和示范性,对其他同类气田具有一定的借鉴意义。  相似文献   

14.
动力学水合物抑制剂GHI-1在高含硫气田的应用   总被引:5,自引:5,他引:5  
随着近年来国内外大量高含硫气田的不断开发,如何解决高含硫天然气水合物的形成与堵塞问题引起了科研工作者的极大关注。甲醇、乙二醇等传统热力学抑制剂有毒、药剂用量大,会产生大量酸性污水难于处理,而国内外现有大多数动力学抑制剂对于高含硫酸性天然气水合物形成的抑制效果较差,均不能完全满足防止高含硫天然气水合物形成的需要。为此,介绍了自主研发的新型动力学水合物抑制剂GHI-1及其在某高含硫酸性天然气湿气输送管线中的现场应用情况。现场试验结果表明:动力学抑制剂GHI-1对于高含硫化氢酸性气体的甲烷天然气水合物具有较好的抑制效果,在现场应用条件下(H2S含量为7.34%、CO2含量为1.65%的天然气气质条件,药剂加量为15 kg/d,输气量为23×104 m3/d,集输压力为7.0 MPa,输气温度为8~10.0 ℃),可使清管周期由加注前的3~5 d延长至15 d以上,其药剂加量是同样效果乙二醇加量的1/3。  相似文献   

15.
天然气采出后通过人工注入乙二醇作为水合物抑制剂,以预防设备和管道的堵塞。建立可行有效的天然气中微量乙二醇取样测定方法,有利于对乙二醇加注量的指导。本方法采用溶剂解吸型硅胶在管输压力下富集天然气中微量的乙二醇,再通过液体解吸后进行气相色谱分析。在现场取样体积10m3、用10mL解吸液处理的条件下,乙二醇的检测限可达到0.05mg/m3。  相似文献   

16.
针对海域天然气水合物降压开采井身结构和管柱设计的特点,综合考虑水合物储层-生产井动态耦合、井下加热器预热和电潜泵实时排采的影响,建立了水合物降压生产期间井筒气液两相流模型及数值求解算法,提出了基于瞬态多相流实时优化泵排量的生产压差自动控制方法,并利用日本第1次水合物试采和中国南海深水气井现场实测数据对模型进行了验证。结合海域水合物试采的地质条件和环境特征,开展数值模拟研究,检测了不同生产压差控制方法的性能,分析了不同生产设计参数条件下生产管柱内的气液流动特性。研究结果显示,所提出的方法能够准确完成降压目标,而Shimizu方法具有一定的随机性;在水合物降压开采过程中,增大生产管柱的管径、施加井口回压、降低电潜泵的安装深度和提高生产压差均可以降低井内的液位高度,其中井口回压对液位高度的影响起着绝对主导作用,而电潜泵位置的影响最小;当采气管线的管径减小至0.108 m、井口回压低于0.12 MPa、生产压差小于2.16 MPa时,主流管线内会出现连续排水现象。  相似文献   

17.
塔里木油田高压气井开采过程中水合物堵塞问题严重,影响了气井的正常生产,因而研究应用了合理的井下节流防治水合物技术。利用水合物生成预测模型与气井井筒压力温度预测模型,对高压气井的水合物生成温度和生成位置进行了预测;采用节点系统分析方法,以节流器为节点预测气井井下节流后的温度压力分布,对比节流前后的井筒压力和温度分布,分析高压气井井下节流防治水合物效果。根据高压气井LN422井的水合物相态曲线和井筒内温度压力场,认为水合物形成风险区为500 m以浅井段。应用井下节流技术后,LN422井的井口压力由29.2 MPa降至12.0 MPa,井口温度由21.0 ℃升至23.7 ℃,且井筒中各处的温度均高于该处的水合物生成临界温度。研究结果表明,井下节流技术可显著降低高压气井的井筒压力和水合物生成风险,延长生产免修期。   相似文献   

18.
中部气田开发初期,井口压力较高,在节流降压的同时,节流后天然气温度降低,天然气中部分饱和水凝析出来,天然气露点降低。本文运用这一原理,研究利用天然气原始压力能,实现节流降温在集气站所采用的工艺流程,给出了在节流降温过程中,不形成水化物所需的甲醇注入量的计算方法。  相似文献   

19.
深水油气管线天然气水合物生成条件预测方法及应用   总被引:1,自引:0,他引:1  
在深水油气田开发中,为了有效防止天然气水合物的生成,迫切需要对天然气水合物生成条件进行准确预测。为此,根据深水环境压力高和多温度梯度的特点,应用气液两相流理论与传热学原理建立了适用于深水油气管线的温度预测模型;在现有实验数据的基础上,对5种天然气水合物预测方法进行了对比优选,结合Beggs-Brill方法建立了预测深水油气管线天然气水合物生成条件的模型,并编制了相应的计算程序。实例研究结果表明,管线流量越大、绝热材料导热系数越小、绝热层厚度越大、停产时间越短时,天然气水合物的生成区域就越小。该模型可用于制订合理的管线流量指标、选择恰当的管线保温材料和准确计算无接触时间,对深水油气田的安全生产提供了技术支持。  相似文献   

20.
The natural gas pipeline from Platform QK18-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages in the pipeline occur occasionally. To maintain the natural gas flow in the pipeline, we proposed a method for analyzing blockages and ascribed them to the hydrate formation and agglomeration. A new high-pressure flow loop was developed to investigate hydrate plug formation and hydrate particle size, using a mixture of diesel oil, water, and natural gas as experimental fluids. The influences of pressure and initial flow rate were also studied. Experimental results indicated that when the flow rate was below 850 kg/h, gas hydrates would form and then plug the pipeline, even at a low water content (10%) of a water/oil emulsion. Furthermore, some practical suggestions were made for daily management of the subsea pipeline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号