首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用共沉淀法, 固定Mg2+/(Al3++Ti4+)摩尔比为3.00, 改变Ti4+/(Al3++Ti4+)摩尔比(RTi, 0~0.40), 合成了5个Mg-Al-Ti-CO3层状双氢氧化物(LDHs)样品, 并进行了表征. 采用电势滴定、 盐滴定和电势质量滴定法, 测定了其结构电荷密度(σst)、 零净电荷点(pHPZNC)和零净质子电荷点(pHPZNPC)等, 并基于普适1-pK和2-pK模型得出其表面羟基酸碱反应特征平衡常数(pK, pKa1int和pKa2int), 考察了RTi对LDHs晶体结构和界面电化学性质的影响. 研究结果表明, 随着RTi增大,晶胞常数和层间距均增大, 可归因于Ti4+离子间强静电排斥作用. pHPZNC和pHPZNPC以及pK, pKa1int和pKa2int均随RTi的增大而有增大的趋势, 表明表面羟基去质子化趋势降低. 各LDHs样品的pHPZNPC值低于其pHPZNC值, 且随电解质(NaNO3)浓度的增大而升高, 可归因于结构正电荷效应.  相似文献   

2.
3.
非常规离子是指伴随离子液体(ILs)不断创制而出现的离子, 其最大特点是具有可设计性. 当ILs处于无限稀释状态时, 最为重要的传递性质是单个离子的无限稀释摩尔电导率(λB), 其能反映离子的溶剂化作用, 是联系不同传递性质的重要纽带. 建立了基团贡献法预测咪唑类阳离子和季铵类阳离子的无限稀释摩尔电导率模型(λB-GCM), 获得了咪唑中心离子[Im]、 烷基铵[N]、 甲基[—CH3]、 亚甲基[—CH2—]、 环氢[ring-H]、 醚基 [—O—]和羟基[—OH]等基团对无限稀释摩尔电导率的贡献值. 建立的λB-GCM不仅能反映不同基团对无限稀释摩尔电导率的影响, 还能体现温度对无限稀释摩尔电导率的影响. 研究结果表明, GCM预测的lnλB含有超过70%的数据点的绝对相对偏差小于2%, 绝对相对偏差超过5%的数据点不足1%, 总的平均绝对相对偏差为1.57%, 说明采用基团贡献法预测非常规阳离子无限稀释摩尔电导率是一种简单可靠的方法.  相似文献   

4.
采用溶液燃烧法制备出PdO/PdO/Ce1-xPdxO2-δ (PdO/CP)和PdO/Ce1-x-yPdxZryO2-δ (PdO/CPZ)催化剂,通过硝酸处理去除催化剂表面的PdO物种得到对应的PdO/Ce1-xPdxO2-δ (CP)和Ce1-x-yPdxZryO2-δ (CPZ)催化剂。考究四种催化剂(PdO/CP、PdO/CPZ、CP、CPZ)对CO和CH4的氧化活性,并计算得出表面PdO和Pdn+物种的转化频率(TOF)。结果表明Zr的添加对PdO催化剂上CO和CH4的催化氧化活性具有不同的影响。Zr的添加对PdO/CPZ和CPZ催化剂的CO催化活性具有明显的促进作用,前者归因于PdO/CPZ催化剂表面生成了更小颗粒的PdO粒子,后者归因于CPZ催化剂中含有更多的氧空位。对于CH4的催化氧化,Pdn+物种起到关键的作用。由于Zr的掺杂导致CeO2的晶格中Pd物种的含量减少,致使PdO/CPZ催化剂和CPZ催化剂对CH4氧化活性的降低。  相似文献   

5.
将一维粒子(碳纳米管, CNTs; 碳纳米纤维, CF)加入聚乙烯醇(PVA)水溶液中, 考察碳粒子表面含氧官能团含量(羟值)、 长径比、 温度及PVA本体溶液浓度等对复合体系流变行为的影响. 结果显示, 复合溶液的黏度(η)随CNTs用量(φCNTs)先增大后降低, 然后继续增大, 呈“N”形变化趋势, 出现两个拐点(φ1φ2). 在φ1附近, CNTs主要起物理交联点作用, 体系η增加; 在φ2附近, CNTs对PVA分子间氢键作用破坏最为严重, 体系η低于纯PVA溶液, 表明不同羟值CNTs仅改变其用量即可使PVA水溶液增黏或降黏. 随着羟值增大, CNTs与PVA大分子间相互作用加强, φ1φ2减小, φ2对应的η下降, 降黏效果显著. CNTs的加入使PVA水合数下降, 羟值大的CNTs可与PVA上更多的羟基形成氢键作用, 水合数更低. 随着φCNTs增大, 复合体系黏流活化能增大. CNTs对不同质量分数PVA水溶液的η具有类似的调控作用, 但调控幅度有差异. 相同羟值、 不同长径比的CNTs对PVA水溶液的黏度调控均呈“N”形变化, 长径比小的CNTs复合体系, φ1φ2较大. 长径比相近但直径较大的CF复合体系表现出更低的φ1φ2.  相似文献   

6.
固体核磁共振Multiple-CP定量技术可实现对不同体系、 不同定量信息的检测. 然而, Multiple-CP对样品属性的宽容度较低, 其中有关样品属性的核磁共振参数包括氢的自旋晶格弛豫时间(T1,H)、 交叉弛豫时 间(TCH)和自旋锁定场下氢的自旋晶格弛豫时间(T1ρ?H)等. 因而需要系统地掌握Multiple-CP各种实验参数与样品上述特性参数之间的关系, 从而确定Multiple-CP技术可适用的体系范围以及最优的实验参数范围. 基于此, 首先以L-丙氨酸为模型样品, 探讨在Multiple-CP实验中弛豫恢复时间(td)、 交叉极化接触时间(tp)和交叉极化次数(n) 3种实验参数对分子中基团比例测量结果的影响规律. 并以L-缬氨酸、 L-丙氨酸/L-缬氨酸的混合物为模型样品, 探讨样品特性参数的差异性对Multiple-CP实验参数范围的影响. 实验结果表明, tpTCH?T1ρ?H的影响较大. 对于纯净物或均相体系, TCH是影响tp参数设置的关键. 依据实验数据发现, 当样品中各基团TCH差异度小于8%时, 实验对tp的宽容度较高; 对于混合物体系, 需同时考虑混合物中组分?T1ρ?H?差异度的影响. 当组分?T1ρ?H?差异度为32%、 各基团TCH差异度为21%时, Multiple-CP对tp的宽容度高, 可在较宽的参数范围内实现定量检测. 而当TCH差异度较大时, 获取定量结果时tp的参数范围较小, 实验条件较苛刻. Multiple-CP定量方法更适用于TCH?T1ρ?H?差异度较小的样品体系的定量研究. 通过研究样品TCH?T1ρ?H?对实验参数的影响, 总结了Multiple-CP方法所适用的样品体系特征, 为使用Multiple-CP进行定量检测提供可参考的参数设置方案.  相似文献   

7.
采用共沉淀法制备了一系列Mn掺杂的CuFeZnK催化剂, 研究了Mn助剂对催化剂的结构及催化CO2加氢制低碳醇合成性能的影响. 结果表明, 引入适量的Mn(质量分数2.1%)能有效提高低碳醇的选择性和时空收 率(STY), 在320 ℃和5 MPa的条件下, CO2的转化率为29.4%, 低碳醇选择性(CO-free)达到23.2%, 时空收率达到41.1 mg·gcat-1·h?1, 且低碳醇在总醇中的比例达到96.9%. 利用X射线衍射(XRD)、 N2吸附-脱附实验、 X射线光电子能谱(XPS)、 透射电子显微镜(TEM)和氢气程序升温还原(H2-TPR)等手段对制得催化剂进行表征, 结果表明, 适量Mn可以起到结构助剂的作用, 减小Cu颗粒尺寸的同时促进Fe5C2相的形成, 从而构建丰富的Cu-Fe5C2活性界面, 用于低碳醇合成. 而过量的Mn反而会堵塞催化剂的孔道, 覆盖活性位点, 降低了催化性能.  相似文献   

8.
郭红霞  崔继方  刘利 《应用化学》2020,37(3):256-263
利用太阳能和半导体光催化剂,将CO2光催化还原转变成碳氢燃料,是缓解温室效应、全球变暖、环境污染和能源危机等一系列问题的理想途径。 本文对氧空位增强的光催化还原CO2反应机理进行归纳,并分别针对还原产物为C1和C2组分的光催化体系进行概括总结。 作为CO2光催化还原过程的第一步,CO2捕获光催化剂导带上的电子生成CO2·-是反应的速控步骤。 氧空位的引入及其带来的金属配位不饱和点,利于CO2捕获电子生成CO2·-,进而促进CO2光催化还原过程。 最后,提出当前氧空位增强光催化还原CO2过程仍然存在的问题,且对发展前景进行展望。  相似文献   

9.
张玥  彭阳峰 《应用化学》2015,32(4):416-421
针对原有生产上存在过程繁琐,收率不高等缺点,以5-氯-8羟基喹啉和氯乙酸-1-甲基己基酯为起始原料,研究了解草酯的合成工艺条件,确定了反应所用的碱、反应时间以及加入的5-氯-8-羟基喹啉与氯乙酸-1-甲基己基酯和碳酸钾与氯乙酸-1-甲基己基酯的摩尔比。在解草酯合成工艺条件的基础上,进一步探讨了解草酯合成的反应动力学,确定该反应符合二级反应条件,得到了323、328、333和339 K不同温度下的反应动力学方程式-r2=-dc2dt=1.46×108e(-49.82×103/RT)c1c2,依据所得的不同温度下的反应速率常数,计算了该反应的活化能与频率因子,所得的反应的活化能和频率因子分别为49.82 kJ/mol和1.46×108,为合成解草酯的工业放大提供了理论指导。  相似文献   

10.
尹正日 《应用化学》2018,35(12):1514-1520
为了方便地检测环境样品中的硫化氢,利用香豆素酰肼肟配体构建了一个基于其铜配合物的可再生高选择性的硫化氢荧光探针(1-Cu2+)。 顺磁性Cu2+的荧光猝灭作用使探针的荧光很弱。 Na2S溶液的加入可显著增强其荧光,其它常见阴离子(F-,Cl-,Br-,I-,CO32-,HPO42-,H2PO4-,NO2-,NO3-,SO42-,CH3COO-,N3-,S2O32-,CN-)对配合物探针的荧光影响很小,共存时也不会干扰探针对硫化氢的增强响应。 Cu2+的加入能够再生探针(1-Cu2+),通过依次加入Cu2+和S2- ,可重复地检测S2-。 该探针响应时间快(~5 s),在0.5~5.0 μmol/L的范围内对H2S响应呈线性,检测限低至37 nmol/L。  相似文献   

11.
张春峰  孙英华 《应用化学》2015,32(9):1055-1060
在水热条件下合成了一种新的二帽二支撑的Keggin型钼钒多金属氧酸盐[Cu(2,2'-bpy)3]{[Cu(2,2'-bpy)2]2HPMo8VIV6IVO42]}·2H2O(1,bpy=联吡啶),利用元素分析、红外光谱、X射线光电子能谱,粉末和X射线单晶衍射等分析技术对化合物的晶体结构进行了表征。 结果表明,该化合物属于单斜晶系,C2/c空间群,a=2.8734(3) nm,b=1.47333(12) nm,c=2.31023(16) nm,β=112.509(5)°,V=9.0351(12) nm3,Z=1,R1=0.0489,wR2=0.1286。 化合物的阴离子是二帽α-Keggin结构P/Mo/V多金属氧簇,通过簇阴离子两个钒帽上的端氧分别支撑两个铜过渡金属配合物,化合物簇阴离子,水分子和2,2'-联吡啶分子之间通过π-π和氢键作用形成了三维超分子结构。  相似文献   

12.
采用UωB97X-D/6-311+G**方法, 研究了气相、 甲苯和水中OH自由基(·OH)引发CH3SSCH3自由基阳离子(CH3SSCH3?+, DMDS?+)裂解的反应机理, 并讨论了溶剂效应对反应的影响. 结果表明, ·OH和DMDS·+首先形成自由基耦合产物CH3S(OH)SCH3+(R1)和氢提取产物复合物[CH2=SSCH3+H2O]+(R2); 随后R1裂解直接发生 S—S键断裂协同质子转移, 而R2裂解依次发生构象变化、 C=S键亲碳加成和S—S键断裂协同质子转移. 去质子化的裂解产物为CH3SOH, CH2=S和HSCH2OH. 甲苯略微降低了裂解反应速控步骤的自由能垒. 水溶剂有利于R1裂解, 但不利于R2裂解, 尤其是单个水分子参与反应. 在气相、 甲苯和水中, 以·OH和DMDS·+为初始反应物, 虽然速控步骤的自由能垒为167.6~202.8 kJ/mol, 但裂解反应均是放热反应(?154.3~?31.4 kJ/mol).  相似文献   

13.
基于变色多酸P2Mo18O626-与绿光Tb3+之间的功能互补及分子间能量转移的原理, 在维生素C(VC)的还原下, P2Mo18O626-@Tb3+溶液由浅黄色变为蓝色, 发生荧光猝灭; 相反, 在H2O2氧化下, 溶液的蓝色褪去, 荧光得以恢复, P2Mo18O626-@Tb3+溶液呈现出可逆的化学响应变色及荧光开关性质. 利用紫外-可见(UV-Vis)及荧光(PL)光谱法对VC浓度进行定量检测, 分别以800 nm处的吸光度和 547 nm处荧光强度的对数值对VC浓度作图, 获得光谱法对VC检测的线性方程, 检出限分别为3.40×10-3和0.21 μmol/L; 利用UV-Vis及PL动力学方法对VC和H2O2检测的响应速度进行了考察, 响应时间分别为52和320 s; 通过UV-Vis光谱及动力学方法考察了VC检测的选择性及可重复使用性.  相似文献   

14.
以正十二烷作稀释剂, 研究了二(2-乙基己基)二硫代次膦酸(D2EHDTPA)对HNO3溶液中Am3+和Eu3+的萃取行为. 考察了酸度、 萃取剂及NO3-浓度和皂化度对萃取的影响. 在考察的pH范围(2.5~4.5)内, D2EHDTPA萃取Am3+和Eu3+的分配比(D)随pH值增大而增加; pH=3.65时, 分离因子(SFAm/Eu)值达到最大(4000). 随D2EHDTPA浓度的增加, DAmDEu值均增加. 斜率分析表明, D2EHDTPA萃取Am3+和Eu3+主要形成3:1和2:1型的萃合物. NO3-未直接参与D2EHDTPA对Am3+和Eu3+的萃取反应. D2EHDTPA经NaOH皂化后, 萃取能力显著增强, SFAm/Eu值提高到104量级, 萃取容量约为理论值的60%. 此外, 使用高分辨质谱、 红外光谱和等温微量热滴定方法研究了D2EHDTPA与Eu3+的配位化学行为, 得到了金属离子与配体的组成比、 络合物稳定常数以及配位热力学参数ΔH, ΔS和ΔG值.  相似文献   

15.
采用溶胶-凝胶法用SO42-部分代替Li3Fe2(PO4)3中的PO43-阴离子制得Li3-xFe2(PO4)3-x(SO4)x(x=00.90)正极材料, 通过X射线衍射、 充放电技术、 循环伏安特性测试及电化学阻抗谱表征了掺杂材料的相组成及电化学性能. 结果表明, SO42-主要以固溶形式存在于Li3Fe2(PO4)3中, 产物中还伴有少量Fe2O3第二相析出. SO42-掺杂使Li3Fe2(PO4)3的放电容量呈抛物线形规律变化, 并在掺杂浓度x=0.60时达到最佳值, 该样品在0.5C倍率下的首次放电容量为111.59 mA·h/g, 比未掺杂的样品提高了18.4%; 60次循环充放电后的容量保持率为96%; 将该样品的放电倍率由0.5C逐渐提高至5C, 再降至0.5C, 并在每个倍率下循环10次, 材料的最终放电容量仍能达到首次放电容量的97%. 导致这些变化的原因是SO42-掺杂使材料的氧化还原性能增强, 电池内阻减小, 极化程度降低及Li+扩散系数增大.  相似文献   

16.
设计合成了3个含酚羟基数量不同的偶氮苯化合物S1、S2和S3作为传感分子,研究S1、S2和S3对阴离子的比色识别,并探讨传感分子的结构与识别阴离子能力之间的联系。 结果表明:传感分子S1、S2和S3对F-、H2PO4-和AcO-比色识别灵敏度高。 在CH3CN中S1、S2和S3的F-检测限达到1.25×10-73.62×10-7 mol/L,S2、S3对H2PO4-和AcO-的检测限也达同一数量级。 S1、S2和S3对阴离子F-、H2PO4-和AcO-比色识别能力取决于阴离子的空间构型、电荷密度和碱性共同作用的结果。 1H NMR滴定结果表明,识别机理是S1、S2和S3的酚羟基与阴离子形成了分子间的氢键。  相似文献   

17.
在大数据机器学习时代, 选择更具代表性的数据集对于模型的训练和验证尤为重要. Kennard- Stone(KS)算法及其各种变种(泛KS算法)是一大类优异的数据集分割方法, 但其采样比例或采样数的选择仅能依靠经验或根据建模结果事后评判. KS算法依据原始文献的计算复杂度为OK3, 难以用于超大数据样本量的计算. 本文基于数据集完备性的讨论, 提出泛KS算法的数据集代表性度量, 以简正振动采样的甲烷分子中碳氢键数据特征分布为例展示采样集代表性效果. 简化KS采样过程的筛选算法, 提高算法效率至O'K2. 提出将数据集切分成多个子集分别实施KS采样的分块采样策略, 可进一步提高算法效率至OK. 偏最小二乘回归测试结果表明, 该方法在提高采样效率的同时仍可保障采样集的代表性.  相似文献   

18.
通过配体前体苯胺基桥联双酚(PhN{CH2-(2-HO-C6H2-Bu2t-3,5)}2,L1H2)与三硅胺基稀土金属配合物的质子交换反应,合成了苯胺基桥联双芳氧基稀土金属配合物,发现反应介质对反应的产物有明显的影响。L1H2与Ln[N(TMS)23μ-Cl)Li(THF)3以物质的量比1∶1在甲苯中90 ℃下反应,可以得到预期的苯胺基桥联双芳氧基稀土金属胺化物L1LnN(TMS)2(THF) (Ln=Yb(1),Sm(2))。而L1H2与Sm[N(TMS)23μ-Cl)Li(THF)3以1∶1的物质的量比在四氢呋喃(THF)中50 ℃下反应,则得到钐-锂杂双金属配合物(THF)LiL12Sm (3)。这些配合物均经过了红外光谱、元素分析和单晶结构测定的表征。发现配合物1和2可以有效地催化L-丙交酯和D,L-丙交酯的开环聚合,得到高相对分子质量的聚丙交酯。其中,配合物1对D,L-丙交酯的开环聚合显示很好的选择性,可以得到杂同含量(Pr)达到0.87的聚丙交酯。  相似文献   

19.
以铁基离子液体(Fe-IL) /聚乙二醇二甲醚(NHD)为脱硫体系, 通过静态吸收反应装置研究了共溶体系吸收氧化H2S的动力学过程. 结果表明, 纯Fe-IL脱硫体系的动力学方程可表示为r=54.62exp(-11720/RT c H 2 S ·cFe(Ⅲ), Fe-IL/NHD吸收氧化H2S属于快速拟一级反应, 复配NHD后, 对Fe(Ⅲ)的反应级数随NHD复配比的增大而增大, 提高温度和NHD的复配比可强化传质过程, 提高脱硫过程的反应速率.  相似文献   

20.
含咪唑离子聚乙烯离聚体的合成与性能   总被引:1,自引:0,他引:1  
利用双(β-二酮单亚胺)钛催化乙烯和5-碘甲基降冰片烯(IMNB)的配位共聚, 高效合成了高分子量、 窄分子量分布和组分可控的烯烃共聚物. 将该含有碘甲基侧基的共聚物与N-甲基咪唑进行亲核取代反应, 然后再与有机金属盐进行离子交换, 制备了一系列带有甲磺酸根(CH3SO3-)、 三氟甲磺酸根(CF3SO3-)或双(三氟甲磺酰)亚胺负离子(Tf2N-)的聚乙烯离聚体. 研究表明, 离子基团的引入会破坏聚合物的结晶, 熔融温度和结晶度均随着离子含量的增加而降低. 但离聚体的玻璃化转变温度却高于乙烯/IMNB共聚物, 表明离子基团之间的强相互作用抑制了链段运动.与共聚物前体相比, 聚乙烯离聚体表现出更高的热稳定性、 更好的亲水性和更高的抗拉强度. 当离子含量相同时, 聚乙烯离聚体的抗拉强度顺序为: CH3SO3->CF3SO3->Tf2N-, 而断裂伸长率呈现相反的趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号