首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A quantum analysis based on the Dirac equation of the propagation of spinor-electron waves in coupled quantum wells, or equivalently coupled electron waveguides, is presented. The complete optical wave equations for Spin-Up (SU) and Spin-Down (SD) spinor-electron waves in these electron guides couplers are derived from the Dirac equation. The relativistic amplitudes and dispersion equations of the spinor-electron wave-guided modes in a planar quantum coupler formed by two coupled quantum wells, or equivalently by two coupled slab electron waveguides, are exactly derived. The main outcomes related to the spinor modal structure, such as the breaking of the non-relativistic degenerate spin states, the appearance of phase shifts associated with the spin polarization and so on, are shown.  相似文献   

2.
We present a method for approximating the effective consequence of generic quantum gravity corrections to the Wheeler–DeWitt equation. We show that in many cases these corrections can produce departures from classical physics at large scales and that this behaviour can be interpreted as additional matter components. This opens up the possibility that dark energy (and possible dark matter) could be large scale manifestations of quantum gravity corrections to classical general relativity. As a specific example we examine the first order corrections to the Wheeler–DeWitt equation arising from loop quantum cosmology in the absence of lattice refinement and show how the ultimate breakdown in large scale physics occurs.  相似文献   

3.
To investigate how quantum effects might modify special relativity, we will study a Lorentz transformation between classical and quantum reference frames and express it in terms of the four-dimensional (4D) momentum of the quantum reference frame. The transition from the classical expression of the Lorentz transformation to a quantum-mechanical one requires us to symmetrize the expression and replace all its dynamical variables with the corresponding operators, from which we can obtain the same conclusion as that from quantum field theory (given by Weinberg's formula): owing to the Heisenberg's uncertainty relation, a particle (as a quantum reference frame) can propagate over a spacelike interval.  相似文献   

4.
We study the influence of boundary conditions on the finite-size corrections of a one-dimensional (1D) quantum spin model by exact and perturbative theoretic calculations. We obtain two new infinite sets of universal amplitude ratios for the finite-size correction terms of the 1D quantum spin model of N sites with free and antiperiodic boundary conditions. The results for the lowest two orders are in perfect agreement with a perturbative conformal field theory scenario proposed by Cardy [J. Cardy, Nucl. Phys. B 270 (1986) 186].  相似文献   

5.
We present a phenomenological theoretical model to treat the trapping of carriers into quantum wells of semiconductor laser structures. We consider explicitely the transport within the barrier layers by solving the continuity equation with the appropriate boundary conditions taking into account surface recombination, radiative and nonradiative recombination in the barrier layers and trapping of carriers into the quantum wells. The experimental findings for the trapping dynamics in GaAs/AlGaAs quantum well structures can be consistently interpreted by the model calculations.  相似文献   

6.
Structures with CdS quantum dots produced by the Langmuir–Blodgett (LB) technique were investigated by Raman, IR, and UV spectroscopies. The confinement effect of longitudinal optical (LO) phonons in CdS quantum dots was investigated by Raman spectroscopy. Surface vibrational modes of CdS quantum dots were observed in IR spectra. It was shown experimentally that the frequency of the surface vibrational modes depends on the properties of the surrounding media. An average size of CdS quantum dots of about 3–6.4 nm was obtained from the analysis of UV measurements. Received: 1 February 1999 / Accepted: 1 April 1999 / Published online: 19 May 1999  相似文献   

7.
Using the scattering matrix method, we investigate acoustic phonon transmission and thermal conductance in a four-perpendicularity-bend quantum waveguide at low temperatures. The transmission spectrum of the quantum waveguide displays a series of resonant peaks and dips; and when one of the bend heights is larger than or equal to the minimum of the dimensions of the phonon channel in the quantum waveguide, a stop-frequency gap will appear; and some single four-perpendicularity-bend quantum waveguides with larger bend heights exhibit narrower width or smaller number of the stop-frequency gaps than that with smaller bend heights. The thermal conductivity is much sensitive to the change of the smaller heights and longitudinal lengths of the bend section; and the thermal conductivity decreases with the increasing of the temperature first, then increases after it reaches a minimum. The investigations of multiple four-perpendicularity-bend waveguides connected in series indicate that the first additional waveguide suppresses the transmission coefficient and forms the stop-frequency gap; and two additional resonance peaks will be formed when each four-perpendicularity-bend waveguide is added in the series. The results could be useful for controlling thermal conductance artificially and the design of phonon devices.  相似文献   

8.
9.
Electronic parameters of a two-dimensional electron gas (2DEG) in modulation-doped highly strained InxGa1−xAs/InyAl1−yAs coupled double quantum wells were investigated by performing Shubnikov-de Haas (S-dH), Van der Pauw Hall-effect, and cyclotron resonance measurements. The S-dH measurements and the fast Fourier transformation results for the S-dH at 1.5 K indicated the electron occupation of two subbands in the quantum well. The electron effective masses of the 2DEG were determined from the cyclotron resonance measurements, and satisfied qualitatively the nonparabolicity effects in the quantum wells. The electronic subband structures were calculated by using a self-consistent method.  相似文献   

10.
Semiclassical approaches to the computation of spectral line parameters stay up to nowadays one of the working tools complementary to refined but costly quantum-mechanical methods. Using of the trajectory concept together with quantum treatment of internal molecular motions imposes however the hypothesis of rotation-translation decoupling and translational motion governed by the isotropic potential. When a posteori justified for small heavy colliders, this hypothesis appears as doubtful for long polyatomic molecules. At the same time, purely classical methods, even requiring the artificial procedure of the correspondence principle with quantum mechanics, easily take into account the rototranslational energy transfer through the trajectory governed by the full anisotropic potential. The infrared line broadening of a typically classical C2H2-Ar system at various temperatures is analyzed here from these two different points of view. When a refined ab initio potential is chosen to represent the interaction energy, the semiclassical approach leads to a visible overestimation of the line broadening for all values of the rotational quantum number and for all temperatures studied whereas the fully classical treatment gives a quite satisfactory prediction. These fully classical computations show that even for C2H2-Ar the rototranslational coupling is quite important, and variations of the translational motion parameters during collisions produce detectable changes in rotation. When, for the sake of a meaningful comparison with the semiclassical approach, the isotropic trajectories are imposed within the classical method, this leads to smaller line widths; the effect strongly depends, however, on the peculiarities of potential energy surface, temperature, and rotational quantum number value.  相似文献   

11.
刘辽 《中国物理快报》2008,25(8):2789-2790
Previously we introduce a new way to quantize the static SchwarzschiM black hole (SSBH), there the SSBH was first treated as a single periodic Euclidean system and then the Bohr-Sommerfeld quantum condition of action was used to obtain a quantum theory of Schwarzschild black hole [Chin. Phys. Lett. (2004) 21 1887]. Here we try to extend the above method to quantize the static de Sitter (SDS) spacetime and establish a quantum theory of both SDS spaze and the energy density contributed from the cosmological constant.  相似文献   

12.
We introduce ways to measure information storage in quantum systems, using a recently introduced computation-theoretic model that accounts for measurement effects. The first, the quantum excess entropy, quantifies the shared information between a quantum process's past and its future. The second, the quantum transient information, determines the difficulty with which an observer comes to know the internal state of a quantum process through measurements. We contrast these with von Neumann entropy and quantum entropy rate and provide a closed-form expression for the latter for the class of deterministic quantum processes.  相似文献   

13.
In this contribution, we investigate quantum effects of relic gravitons in a Friedmann–Robertson–Walker (FRW) cosmological background. We reduce the problem to that of a generalized time-dependent harmonic oscillator and find the corresponding exact Schrödinger states with the help of linear invariants and of the dynamical invariant method. Afterwards, we construct Gaussian wave packet states and calculate the quantum dispersions as well as the quantum correlations for each mode of the quantized field.  相似文献   

14.
We study the equilibrium dynamics of the relative phase in a superconducting Josephson link taking into account the quantum fluctuations of the electromagnetic vacuum. The photons act as a superohmic heat bath on the relative Cooper pair number and thus, indirectly, on the macroscopic phase difference φ. This leads to an enhancement of the mean square 〈φ2〉 that adds to the spread due to the Coulomb interaction carried by the longitudinal electromagnetic field. We also include the interaction with the electronic degrees of freedom due to quasiparticle tunneling, which couple to the phase and only indirectly to the particle number. The simultaneous inclusion of both the radiation field fluctuations and quasiparticle tunneling leads to a novel type of particle-bath Hamiltonian in which the quantum particle couples through its position and momentum to two independent bosonic heat baths. We study the interplay between the two mechanisms in the present context and find interference contributions to the quantum fluctuations of the phase. We explore the observability of the QED effects discussed here.  相似文献   

15.
We investigate quantum strategies in moving frames by considering Prisoners' Dilemma and propose four thresholds of γ for two players to determine their Nash Equilibria. We find that the relativistic operations could enhance or diminish the quantum features of the game for different players who move in different directions relative to the arbiter.  相似文献   

16.
F. Romeo 《Physics letters. A》2009,373(15):1383-1386
Starting from the reduced dynamical model of a two-junction quantum interference device, it shown that a quantum analog of the system can be exhibited. This quantum model extends the well-known properties of the device when its characteristic dimensions are of the order of mesoscopic length scales. By finding eigenvalues of the corresponding Hamiltonian operator, the persistent currents flowing in the ring have been obtained. The resulting quantum analog of the overdamped two-junction quantum interference device can be seen as a supercurrent qubit operating in the limit of negligible capacitance and finite inductance.  相似文献   

17.
The effect of elastic anisotropy on the strain fields and confinement potentials in InAs/GaAs quantum dot (QD) nanostructures was investigated for an isolated dot and a stacked multi-layer dots using finite element analysis and model solid theory. The assumption of isotropy tends to underestimate especially hydrostatic strain that is known to modify confinement potentials in conduction band. Consideration of anisotropy results in a wider band gap and shallower potential well as compared with the isotropic model. Since the band gap and potential well depth would be related to opto-electronic properties of quantum dot systems via quantum mechanical effects, it is suggested that consideration of elastic anisotropy in the calculation of strains and band structures is necessary for the design of QD-based opto-electronic devices.  相似文献   

18.
We predict that in quantum conductors the excess noise can be absent or even negative provided the energy dependence of the electron transmission probability at the Fermi energy is sufficiently sharp. In other words the current (or voltage) fluctuations under transport conditions can be less than in equilibrium. As examples for this surprising behavior we consider resonant tunneling, ballistic point contacts and the integer quantum Hall effect.Work performed within the research program of the Sonderforschungsbereich 341, Köln-Aachen-Jülich  相似文献   

19.
Earlier work presented spacetime path formalism for relativistic quantum mechanics arising naturally from the fundamental principles of the Born probability rule, superposition, and spacetime translation invariance. The resulting formalism can be seen as a foundation for a number of previous parametrized approaches to relativistic quantum mechanics in the literature. Because time is treated similarly to the three-space coordinates, rather than as an evolution parameter, such approaches have proved particularly useful in the study of quantum gravity and cosmology. The present paper extends the foundational spacetime path formalism to include massive, non-scalar particles of any (integer or half-integer) spin. This is done by generalizing the principle of translational invariance used in the scalar case to the principle of full Poincaré invariance, leading to a formulation for the non-scalar propagator in terms of a path integral over the Poincaré group. Once the difficulty of the non-compactness of the component Lorentz group is dealt with, the subsequent development is remarkably parallel to the scalar case. This allows the formalism to retain a clear probabilistic interpretation throughout, with a natural reduction to non-relativistic quantum mechanics closely related to the well-known generalized Foldy-Wouthuysen transformation.  相似文献   

20.
The peculiar spectral properties of the spinboson model make it suitable for an investigation of quantum nonintegrability effects and level statistics from a new perspective. For fixed spin quantum numbers, its energy spectrum consists of 2s+1 sequences of levels with no upper bound. These sequences are identified and labelled consecutively by means of a quantum invariant calculated from the time average of a non-stationary operator. For integrable cases, level repulsion (on the energy axis) is limited to states within each sequence. From the observed spectral properties, we infer a series ofs-dependent level-spacing distributions. They converge towards a Poisson distribution fors. For nonintegrable cases, level repulsion becomes a universal phenomenon, but the amount of repulsion between two states decreases with increasing separation (in label) of the two sequences to which they belong. For smalls, the quantum nonintegrability effects are compelling but not at all chaotic. Nevertheless, they contain all the ingredients necessary to produce the symptoms commonly described as indicators of quantum chaos. In this model, we can observe quantum chaos in the making under very controllable conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号