首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A concise and flexible synthesis of fully substituted 2‐aminopyrroles via gold‐catalyzed formal [3+2] cycloaddition between ynamides and isoxazoles has been developed. Under mild reaction conditions, various 2‐aminopyrrole derivatives were obtained in good to excellent yields, thus providing an efficient and atom‐economic way for the construction of fully substituted 2‐aminopyrroles.  相似文献   

2.
《中国化学》2018,36(5):421-429
Reported herein is an example of highly regio‐, diastereo‐ and enantioselective Cu(I)‐catalyzed intermolecular [3+2] cycloaddition reaction of α‐substituted iminoesters with α‐trifluoromethyl α,β‐unsaturated esters. This novel strategy provided a facile access to pyrrolidines with two skipped (aza)quaternary stereocenters including a CF3 all‐carbon quaternary stereocenter. A broad substrate scope was observed and high yields (up to 94%) with excellent diastereoselectivity (up to >20 : 1 d.r.) and enantioselectivity (up to 98% ee) were obtained.  相似文献   

3.
A new approach for the synthesis of 2-aminobenzofurans has been described via Sc(OTf)3 mediated formal cycloaddition of isocyanides with the in situ generated ortho-quinone methides (o-QMs) from o-hydroxybenzhydryl alcohol. Notably, as a class of readily available and highly active intermediates, o-QMs were first used in the construction of benzofurans. This [4 + 1] cycloaddition reaction provides a straightforward and efficient methodology for the construction of 2-aminobenzofurans scaffold in good yield (up to 93% yield) under mild conditions.  相似文献   

4.
5.
Imidazole ring is an important five‐membered aromatic heterocycle that is widely present in natural products and synthetic molecules. The isocyanide–isocyanide [3+2] cross‐cycloaddition reaction constitutes a straightforward method to access imidazoles starting from the easily available chemicals. So far, only three successive reports are known and all lead to the formation of 1,4‐disubstituted imidazoles. Here, we report the first isocyanide–isocyanide [3+2] cross‐cycloaddition reaction allowing for the formation of 1,4,5‐trisubstituted imidazoles under silver catalysis. An unexpected 1,2‐migration of sulfonyl, alkoxycaybonyl, and carbamoyl groups took place during the cyclization process that is responsible for the formation of trisubstituted imidazoles. This report displayed a mechanistically novel synthetic method toward a variety of imidazole derivatives, which are otherwise difficult to access by conventional methods.  相似文献   

6.
A formal [4+2] cycloaddition of α,α′‐dichloro‐ortho‐xylenes with various alkynes has been developed using a low‐valent cobalt catalyst. The transformation has a wide substrate scope and high functional‐group tolerance and led to 1,4‐dihydronaphthalenes. The formed cycloadducts were easily aromatized with MnO2 under air. A mechanistic investigation suggests that the transformation proceeds through a benzyl cobaltation of alkyne, not the classical Diels–Alder reaction of ortho‐quinodimethanes. This methodology provides a straightforward and streamlined access to linearly expanded π‐conjugated aromatics.  相似文献   

7.
The synthesis of pyridines through direct intermolecular cycloaddition of alkynes and nitriles is a contemporary challenge in organic synthesis. A Brønsted acid mediated formal [2+2+2] cycloaddition of heteroalkynes and nitriles was developed that proceeds under mild conditions. This constitutes a modular approach to highly substituted pyridine cores.  相似文献   

8.
A formal [4+2] propargylic annulation of indoles and pyrrole with ethynyl benzoxazinanones was described. This protocol provides a concise synthesis of tetrahydro‐5H‐indolo[2,3‐b]quinolines and tetrahydro‐3H‐pyrrolo[3,2‐b]quinoline, the core structures of alkaloid frameworks, featuring excellent yields, high diastereoselectivity, mild conditions and wide substrate scope.  相似文献   

9.
A new cross‐cycloaddition reaction between a wide range of isocyanides and 2‐isocyanochalcones (or analogues) was developed for the expeditious synthesis of pyrrolo[3,4‐b]indoles under thermal conditions. On the basis of the experimental results and DFT calculations, a mechanism for this domino reaction is proposed involving chemoselective heterodimerization of two different isocyanides to form 1,4‐diazabutatriene intermediates, followed by an intramolecular [3+2]‐cycloaddition and 1,3‐proton shift.  相似文献   

10.
A new synthetic route to the privileged 1,2‐dihydroisoquinolines is reported. This method, which relies on a gold‐catalyzed formal [4+2] cycloaddition between ynamides and imines, provides a new retrosynthetic disconnection of the 1,2‐dihydroisoquinoline core by installing the 1,8a C?C and 2,3 C?N bonds in one step. Both aldimines and ketimines can be used as substrates. In addition, one example of dihydrofuropyridine synthesis is also demonstrated.  相似文献   

11.
A formal intermolecular [2+2+2] cycloaddition reaction of enynes to aldehydes is presented, which can be realized in the presence of a simple and benign calcium catalyst. The reaction proceeds with excellent chemo, regio‐ and diastereoselectivity and leads to a one‐step assembly of highly interesting bicyclic building blocks containing up to three stereocenters from simple precursors via a new type of skeletal rearrangement of enynes. The observed diastereoselectivity is accounted for by two different mechanistic proposals. The first one engages mechanistic prospects arising from a gold catalyzed reaction in the absence of the stabilizing gold substituent. The second proposal involves an unprecedented cyclization–carbonyl allene ene reaction–hydroalkoxylation cascade.  相似文献   

12.
13.
A method for the stereoselective [4+2]‐cycloaddition of alkenylboranes and dienes is presented. This transformation was accomplished through the introduction of a new strategy that involves the use of chiral N‐protonated alkenyl oxazaborolidines as dieneophiles. The reaction leads to the formation of products that can be readily derivatized to more complex structural motifs through stereospecific transformations of the C?B bond such as oxidation and homologation. Detailed computation evaluation of the reaction has uncovered a surprising role of the counterion on stereoselectivity.  相似文献   

14.
Enoldiazoimides, a new subclass of enoldiazo compounds, generate enol‐substituted carbonyl ylides whose reactions with sulfur ylides enable an unprecedented formal [4+2] cycloaddition. The resulting multifunctionalized indolizidinones, which incorporate sulfur, are formed in good yields under mild reaction conditions. The uniqueness of this transformation stems from the role of the silyl‐protected enol, since the corresponding acetyldiazoimide failed to provide any cross‐products in metal‐catalyzed reactions with sulfur ylides. This copper‐catalyzed cycloaddition is initiated with the generation of enol‐substituted carbonyl ylides and sulfur ylides from enoldiazoimides and sulfonium salts, respectively, and proceeds through stepwise six‐membered ring formation, C?O and C?S bond cleavage, and silyl and acetyl group migration.  相似文献   

15.
《中国化学》2017,35(10):1569-1574
An atom economical highly efficient method has been developed for the synthesis of quinoline and 1,2,3,4‐tetrahydroquinoline derivatives from o ‐nitrotoluenes bearing electron‐withdrawing groups and olefins (acrylic esters, acrylonitriles, and methyl acrylates) via a base‐catalyzed [2 + 4] cycloaddition. This simple, rapid, and environment‐ friendly method provides a practical pathway for the synthesis of quinoline and 1,2,3,4‐tetrahydroquinoline derivatives. The starting materials are readily available and 37 products were obtained in good to excellent yields.  相似文献   

16.
The theoretical background of the formation of N‐heterocyclic oxadiazoline carbenes through a metal‐assisted [2+3]‐dipolar cycloaddition (CA) reaction of nitrones R1CH?N(R2)O to isocyanides C?NR and the decomposition of these carbenes to imines R1CH?NR2 and isocyanates O?C?NR is discussed. Furthermore, the reaction mechanisms and factors that govern these processes are analyzed in detail. In the absence of a metal, oxadiazoline carbenes should not be accessible due to the high activation energy of their formation and their low thermodynamic stability. The most efficient promotors that could assist the synthesis of these species should be “carbenophilic” metals that form a strong bond with the oxadiazoline heterocycle, but without significant involvement of π‐back donation, namely, AuI, AuIII, PtII, PtIV, ReV, and PdII metal centers. These metals, on the one hand, significantly facilitate the coupling of nitrones with isocyanides and, on the other hand, stabilize the derived carbene heterocycles toward decomposition. The energy of the LUMOCNR and the charge on the N atom of the C?N group are principal factors that control the cycloaddition of nitrones to isocyanides. The alkyl‐substituted nitrones and isocyanides are predicted to be more active in the CA reaction than the aryl‐substituted species, and the N,N,C‐alkyloxadiazolines are more stable toward decomposition relative to the aryl derivatives.  相似文献   

17.
18.
《中国化学》2017,35(10):1611-1618
A novel sulfur‐promoted cyclization of hydrazides and isonitriles to produce 1,3,4‐oxadiazole has been developed. The method is operationally simple and compatible with a wide scope of substrates and various 2‐amino‐ 1,3,4‐oxadiazoles are efficiently obtained in good yields.  相似文献   

19.
20.
A stereodivergent synthesis of tetrahydrofuroindoles through palladium‐catalyzed asymmetric dearomative formal [3+2] cycloaddition of nitroindoles with epoxybutenes was developed. The polarity of the solvent was found to play a key role in the diastereoselectivity. In toluene, good to excellent yields (70–99 %), diastereoselectivity (87/13‐>95/5 d.r.), and enantioselectivity (85/15–94/6 e.r.) were obtained, regardless of the properties of the substituents on nitroindoles. In acetonitrile, tetrahydrofuroindoles of a different diastereoisomer were produced with good to excellent yields (75–98 %) and stereoselectivity (78/22–93/7 d.r., 93/7–99/1 e.r.). Mechanistic studies were conducted to illustrate the origin of the diastereodivergency. The kinetic experiments indicate that the rate‐determining step of this reaction is different in different solvents. ESI‐MS experiments also support the existence of key palladium complex intermediates and the catalytic cycle of the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号