首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first mitochondrion‐anchoring photosensitizer that specifically generates singlet oxygen (1O2) in mitochondria under white light irradiation that can serve as a highly effective radiosensitizer is reported here, significantly sensitizing cancer cells to ionizing radiation. An aggregation‐induced emission luminogen (AIEgen), namely DPA‐SCP, is rationally designed with α‐cyanostilbene as a simple building block to reveal AIE, diphenylamino (DPA) group as a strong electron donating group to benefit red emission and efficient light‐controlled 1O2 generation, as well as a pyridinium salt as the targeting moiety to ensure specific mitochondrial localization. The AIE signature endows DPA‐SCP with the capacity to visualize mitochondria in a fluorescence turn‐on mode. It is found that under optimized experimental condition, DPA‐SCP with white light does not lead to apoptosis/death of cancer cells, whereas provides an elevated 1O2 environment in the mitochondria. More importantly, increasing intracellular level of 1O2 originated from mitochondria is demonstrated to be a generic method to enhance the radiosensitivity of cancer cells with a supra‐additive synergistic effect of “0 + 1 > 1.” Noteworthy is that “DPA‐SCP + white light” achieves a high SER10 value of 1.62, which is much larger than that of the most popularly used radiosensitizers, gold nanoparticles (1.19), and paclitaxel (1.32).  相似文献   

2.
Autophagy is a biological process that has attracted considerable attention as a target for novel therapeutics. Recently, nanomaterials (NMs) have been reported to modulate autophagy, which makes them potential agents for the treatment of autophagy‐related diseases. In this study, zinc oxide nanoparticles (ZNPs) are utilized to evaluate NM‐induced autophagy and debate the mechanisms involved. It is found that ZNPs undergo pH‐dependent ion shedding and that intracellular zinc ions (Zn2+) play a crucial role in autophagy. Autophagy is activated with ZNPs treatment, which is inhibited after Zn2+ sequestration via ethylenediamine tetra‐acetic acid. Lysosome‐based autophagic degradation is halted after ZNPs treatment for more than 3 h and is accompanied by blockage of lysophagy, which renews impaired lysosomes. Furthermore, the microtubule (MT) system participates in ZNP‐induced lysosome–autophagy system changes, especially in the fusion between autophagosomes and lysosomes. MT acetylation is helpful for protecting from ZNP‐induced MT disruption, and it promotes the autophagic degradation process. In conclusion, this study provides valuable information on NM‐induced lysosome–autophagy system changes, particularly with respect to the role of lysophagy and the MT system, which point to some attractive targets for the design of engineered nanoparticles.  相似文献   

3.
Local hypoxia in tumors, as well as the short lifetime and limited action region of 1O2, are undesirable impediments for photodynamic therapy (PDT), leading to a greatly reduced effectiveness. To overcome these adversities, a mitochondria‐targeting, H2O2‐activatable, and O2‐evolving PDT nanoplatform is developed based on FeIII‐doped two‐dimensional C3N4 nanofusiform for highly selective and efficient cancer treatment. The ultrahigh surface area of 2D nanosheets enhances the photosensitizer (PS) loading capacity and the doping of FeIII leads to peroxidase mimetics with excellent catalytic performance towards H2O2 in cancer cells to generate O2. As such tumor hypoxia can be overcome and the PDT efficacy is improved, whilst at the same time endowing the PDT theranostic agent with an effective T 1‐weighted in vivo magnetic resonance imaging (MRI) ability. Conjugation with a mitochondria‐targeting agent could further increase the sensitivity of cancer cells to 1O2 by enhanced mitochondria dysfunction. In vitro and in vivo anticancer studies demonstrate an outstanding therapeutic effectiveness of the developed PDT agent, leading to almost complete destruction of mouse cervical tumor. This development offers an attractive theranostic agent for in vivo MRI and synergistic photodynamic therapy toward clinical applications.  相似文献   

4.
Battery‐type materials are promising candidates for achieving high specific capacity for supercapacitors. However, their slow reaction kinetics hinders the improvement in electrochemical performance. Herein, a hybrid structure of P‐doped Co3O4 (P‐Co3O4) ultrafine nanoparticles in situ encapsulated into P, N co‐doped carbon (P, N‐C) nanowires by a pyrolysis–oxidation–phosphorization of 1D metal–organic frameworks derived from Co‐layered double hydroxide as self‐template and reactant is reported. This hybrid structure prevents active material agglomeration and maintains a 1D oriented arrangement, which exhibits a large accessible surface area and hierarchically porous feature, enabling sufficient permeation and transfer of electrolyte ions. Theoretical calculations demonstrate that the P dopants in P‐Co3O4@P, N‐C could reduce the adsorption energy of OH? and regulate the electrical properties. Accordingly, the P‐Co3O4@P, N‐C delivers a high specific capacity of 669 mC cm?2 at 1 mA cm?2 and an ultralong cycle life with only 4.8% loss over 5000 cycles at 30 mA cm?2. During the fabrication of P‐Co3O4@P, N‐C, Co@P, N‐C is simultaneously developed, which can be integrated with P‐Co3O4@P, N‐C for the assembly of asymmetric supercapacitors. These devices achieve a high energy density of 47.6 W h kg?1 at 750 W kg?1 and impressive flexibility, exhibiting a great potential in practical applications.  相似文献   

5.
19F magnetic resonance imaging (19F MRI) agents capable of being activated upon interactions with cancer triggers are attracting increasing attention, although challenges still remain for precise and specific detection of cancer tissues. In this study, a novel hybrid 19F MRI agent for pH‐sensitive detection of breast cancer tissues is reported, a composite system designed by conjugating a perfluoropolyether onto the surface of manganese‐incorporated layered double hydroxide (Mn‐LDH@PFPE) nanoparticles. The 19F NMR/MRI signals from aqueous solutions of Mn‐LDH@PFPE nanoparticles are quenched at pH 7.4, but “turned on” following a reduction in pH to below 6.5. This is due to partial dissolution of Mn2+ from the Mn‐LDH nanoparticles and subsequent reduction in the effect of paramagnetic relaxation. Significantly, in vivo experiments reveal that an intense 19F MR signal can be detected only in the breast tumor tissue after intravenous injection of Mn‐LDH@PFPE nanoparticles due to such a specific activation. Thus pH‐activated Mn‐LDH@PFPE nanoparticles are a potential “smart” 19F MRI agent for precise and specific detection of cancer diseases.  相似文献   

6.
Conjugated polymers with strong absorbance in the near‐infrared (NIR) region have been widely explored as photothermal therapy agents due to their excellent photostability and high photothermal conversion efficiency. Herein, polypyrrole (PPy) nanoparticles are fabricated by using bovine serum albumin (BSA) as the stabilizing agent, which if preconjugated with photosensitizer chlorin e6 (Ce6) could offer additional functionalities in both imaging and therapy. The obtained PPy@BSA‐Ce6 nanoparticles exhibit little dark toxicity to cells, and are able to trigger both photodynamic therapy (PDT) and photothermal therapy (PTT). As a fluorescent molecule that in the meantime could form chelate complex with Gd3+, Ce6 in PPy@BSA‐Ce6 nanoparticles after being labeled with Gd3+ enables dual‐modal fluorescence and magnetic resonance (MR) imaging, which illustrate strong tumor uptake of those nanoparticles after intravenous injection into tumor‐bearing mice. In vivo combined PDT and PTT treatment is then carried out after systemic administration of PPy@BSA‐Ce6, achieving a remarkably improved synergistic therapeutic effect compared to PDT or PTT alone. Hence, a rather simple one‐step approach to fabricate multifunctional nanoparticles based on conjugated polymers, which appear to be promising in cancer imaging and combination therapy, is presented.  相似文献   

7.
The development of high‐performance contrast agents in magnetic resonance imaging (MRI) has recently received considerable attention, as they hold great promise and potential as a powerful tool for cancer diagnosis. Despite substantial achievements, it remains challenging to develop nanostructure‐based biocompatible platforms that can generate on‐demand MRI signals with high signal‐to‐noise ratios and good tumor specificity. Here, the design and synthesis of a new class of nanoparticle‐based contrast agents comprising self‐assembled NaGdF4 and CaCO3 nanoconjugates is reported. In this design, the spatial confinement of the T1 source (Gd3+ ions) leads to an “OFF” MRI signal due to insufficient interaction between the protons and the crystal lattices. However, when immersed in the mildly acidic tumor microenvironment, the embedded CaCO3 nanoparticles generate CO2 bubbles and subsequently disconnect the nanoconjugate, thus resulting in an “ON” MRI signal. The in vivo performance of these nanoconjugates shows more than 60‐fold contrast enhancement in tumor visualization relative to the commercially used contrast agent Magnevist. This work presents a significant advance in the construction of smart MRI nanoprobes ideally suited for deep‐tissue imaging and target‐specific cancer diagnosis.  相似文献   

8.
Tuning energy levels plays a crucial role in developing cost‐effective, earth‐abundant, and highly active oxygen evolution catalysts. However, to date, little attention has been paid to the effect of using heteroatom‐occupied lattice sites on the energy level to engineer electrocatalytic activity. In order to explore heteroatom‐engineered energy levels of spinel Co3O4 for highly‐effective oxygen electrocatalysts, herein Al atoms are directly introduced into the crystal lattice by occupying the Co2+ ions in the tetrahedral sites and Co3+ ions in the octahedral sites (denoted as Co2+Td and Co3+Oh, respectively). Experimental and theoretical simulations demonstrate that Al3+ ions substituting Co2+Td and Co3+Oh active sites, especially Al3+ ions occupying the Co2+Td sites, optimizes the adsorption, activation, and desorption features of intermediate species during oxygen evolution reaction (OER) processes. As a result, the optimized Co1.75Al1.25O4 nanosheet exhibit unprecedented OER activity with an ultralow overpotential of 248 mV to deliver a current of 10 mA cm–2, among the best Co‐based OER electrocatalysts. This work should not only provide fundamental understanding of the effect of Al‐occupied different Co sites in Co3–xAlxO4 composites on OER performance, but also inspire the design of low‐cost, earth‐abundant, and high‐active electrocatalysts toward water oxidation.  相似文献   

9.
Radioisotope therapy (RIT), in which radioactive agents are administered or implanted into the body to irradiate tumors from the inside, is a clinically adopted cancer treatment method but still needs improvement to enhance its performances. Herein, it is found that polyethylene glycol (PEG) modified tungsten disulfide (WS2) nanoflakes can be easily labeled by 188Re, a widely used radioisotope for RIT, upon simple mixing. Like other high‐Z elements acting as radiosensitizers, tungsten in the obtained 188Re‐WS2‐PEG would be able to absorb ionization radiation generated from 188Re, enabling ‘‘self‐sensitization’’ to enhance the efficacy of RIT as demonstrated in carefully designed in vitro experiments of this study. In the meanwhile, the strong NIR absorbance of WS2‐PEG could be utilized for NIR light‐induced photothermal therapy (PTT), which if applied on tumors would be able to greatly relieve their hypoxia state and help to overcome hypoxia‐associated radioresistance of tumors. Therefore, with 188Re‐WS2‐PEG as a multifunctional agent, which shows efficient passive tumor homing after intravenous injection, in vivo self‐sensitized, NIR‐enhanced RIT cancer treatment is realized, achieving excellent tumor killing efficacy in a mouse tumor model. This work presents a new concept of applying nanotechnology in RIT, by delivering radioisotopes into tumors, self‐sensitizing the irradiation‐induced cell damage, and modulating the tumor hypoxia state to further enhance the therapeutic outcomes.  相似文献   

10.
Here a multifunctional nanoplatform (upconversion nanoparticles (UCNPs)‐platinum(IV) (Pt(IV))?ZnFe2O4, denoted as UCPZ) is designed for collaborative cancer treatment, including photodynamic therapy (PDT), chemotherapy, and Fenton reaction. In the system, the UCNPs triggered by near‐infrared light can convert low energy photons to high energy ones, which act as the UV–vis source to simultaneously mediate the PDT effect and Fenton's reaction of ZnFe2O4 nanoparticles. Meanwhile, the Pt(IV) prodrugs can be reduced to high virulent Pt(II) by glutathione in the cancer cells, which can bond to DNA and inhibit the copy of DNA. The synergistic therapeutic effect is verified in vitro and in vivo results. The cleavage of Pt(IV) from UCNPs during the reduction process can shift the larger UCPZ nanoparticles (NPs) to the smaller ones, which promotes the enhanced permeability and retention (EPR) and deep tumor penetration. In addition, due to the inherent upconversion luminescence (UCL) and the doped Yb3+ and Fe3+ in UCPZ, this system can serve as a multimodality bioimaging contrast agent, covering UCL, X‐ray computed tomography, magnetic resonance imaging, and photoacoustic. A smart all‐in‐one imaging‐guided diagnosis and treatment system is realized, which should have a potential value in the treatment of tumor.  相似文献   

11.
Rapid clearance of nanoagents is a critical criterion for their clinical translation. Herein, it is reported that biodegradable and renal clearable nanoparticles are potentially useful for image‐guided photothermal therapy of tumors. The multifunctional nanoparticles with excellent colloidal stability are synthesized through coordination reactions between Fe3+ ions and gallic acid (GA)/polyvinyl pyrrolidone (PVP) in aqueous solution. Detailed characterization reveals that the resulting Fe3+/GA/PVP complex nanoparticles (FGPNs) integrate strong near‐infrared absorption with paramagnetism well. As a result, the FGPNs present outstanding performance for photoacoustic imaging and magnetic resonance imaging of tumors, and outstanding photothermal ablation effect for tumor therapy owing to their high photothermal conversion efficiency. More importantly, the pharmacokinetic behaviors of the FGPNs determined through 125I labeling suggest that the FGPNs are readily degraded in vivo showing a short biological half‐life, and the decomposition products are excreted through either renal clearance pathway or bowel elimination pathway via stomach, which highlights the characteristics of the current multifunctional theranostic agent and their potential in clinical translation.  相似文献   

12.
The market of available contrast agents for clinical magnetic resonance imaging (MRI) has been dominated by gadolinium (Gd) chelates based T1 contrast agents for decades. However, there are growing concerns about their safety because they are retained in the body and are nephrotoxic, which necessitated a warning by the U.S. Food and Drug Administration against the use of such contrast agents. To ameliorate these problems, it is necessary to improve the MRI efficiency of such contrast agents to allow the administration of much reduced dosages. In this study, a ten‐gram‐scale facile method is developed to synthesize organogadolinium complex nanoparticles (i.e., reductive bovine serum albumin stabilized Gd‐salicylate nanoparticles, GdSalNPs‐rBSA) with high r1 value of 19.51 mm ?1 s?1 and very low r2/r1 ratio of 1.21 (B0 = 1.5 T) for high‐contrast T1‐weighted MRI of tumors. The GdSalNPs‐rBSA nanoparticles possess more advantages including low synthesis cost (≈0.54 USD per g), long in vivo circulation time (t1/2 = 6.13 h), almost no Gd3+ release, and excellent biosafety. Moreover, the GdSalNPs‐rBSA nanoparticles demonstrate excellent in vivo MRI contrast enhancement (signal‐to‐noise ratio (ΔSNR) ≈ 220%) for tumor diagnosis.  相似文献   

13.
The development of rechargeable metal–air batteries and water electrolyzers are highly constrained by electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). However, the construction of efficient trifunctional electrocatalysts for ORR/OER/HER are highly desirable yet challenging. Herein, hollow carbon nanotubes integrated single cobalt atoms with Co9S8 nanoparticles (CoSA + Co9S8/HCNT) are fabricated by a straightforward in situ self‐sacrificing strategy. The structure of the CoSA + Co9S8/HCNT are verified by X‐ray absorption spectroscopy and aberration‐corrected scanning transmission electron microscopy. Theoretical calculations and experimental results embrace the synergistic effects between Co9S8 nanoparticles and single cobalt atoms through optimizing the electronic configuration of the CoN4 active sites to lower the reaction barrier and facilitating the ORR, OER, and HER simultaneously. Consequently, rechargeable liquid and all‐solid‐state flexible Zn–air batteries based on CoSA + Co9S8/HCNT exhibit remarkable stability and excellent power density of 177.33 and 51.85 mW cm?2, respectively, better than Pt/C + RuO2 counterparts. Moreover, the as‐fabricated Zn–air batteries can drive an overall water splitting device assembled with CoSA + Co9S8/HCNT and achieve a current density of 10 mA cm?2 at a low voltage of 1.59 V, also superior to Pt/C + RuO2. Therefore, this work presents a promising approach to an efficient trifunctional electrocatalyst toward practical applications.  相似文献   

14.
Amino acid‐based poly(ester amide)s are a new family of biodegradable polymers that exhibit “pseudo‐protein” characteristics and the structural varieties of poly(ester amide)s make them hold great potential in multiple biomedical applications. In this study, a lysine‐phenylalanine‐based pseudo‐protein is developed as the self‐assembled nanomicellar carrier for efficient delivery of doxorubicin. The lysine moieties from the pseudo‐protein provide available sites for further functionalization, and methylcoumarin is introduced for easy and photocontrollable crosslinking, to effectively improve the micellar stability in serum containing environment and against dilution. However, photocrosslinks do not bring in any barrier for the intracellular release of doxoubicin. Doxorubicin release is significantly accelerated by proteolytic enzyme, due to the biodegradability of pseudo‐protein micelles. In addition, pseudo‐protein delivery system exhibits unique interactions with HCT116 human colon cancer cells. Doxorubicin loaded in pseudo‐protein micelles colocalizes with mitochondria and endolysosomes, while free doxorubicin is distributed only in the nuclei. Doxorubicin‐loaded pseudo‐protein micelles stimulate increased level of intracellular reactive oxygen species and mitochondrial damage. Free doxorubicin induces conditional apoptosis in HCT116 cells between 0.5× 10?6 and 2 × 10?6 m , while DOX loaded in pseudo‐protein micelles induces apoptosis over a higher/broader concentration range (2 × 10?6–10 × 10?6 m ).  相似文献   

15.
The future perspective of fluorescence imaging for real in vivo application are based on novel efficient nanoparticles which is able to emit in the second biological window (1000–1400 nm). In this work, the potential application of Nd3+‐doped LaF3 (Nd3+:LaF3) nanoparticles is reported for fluorescence bioimaging in both the first and second biological windows based on their three main emission channels of Nd3+ ions: 4F3/24I9/2, 4F3/24I11/2 and 4F3/24I13/2 that lead to emissions at around 910, 1050, and 1330 nm, respectively. By systematically comparing the relative emission intensities, penetration depths and subtissue optical dispersion of each transition we propose that optimum subtissue images based on Nd3+:LaF3 nanoparticles are obtained by using the 4F3/24I11/2 (1050 nm) emission band (lying in the second biological window) instead of the traditionally used 4F3/24I9/2 (910 nm, in the first biological window). After determining the optimum emission channel, it is used to obtain both in vitro and in vivo images by the controlled incorporation of Nd3+:LaF3 nanoparticles in cancer cells and mice. Nd3+:LaF3 nanoparticles thus emerge as very promising fluorescent nanoprobes for bioimaging in the second biological window.  相似文献   

16.
Cancer cells are susceptible to oxidative stress; therefore, selective elevation of intracellular reactive oxygen species (ROS) is considered as an effective antitumor treatment. Here, a liposomal formulation of dichloroacetic acid (DCA) and metal–organic framework (MOF)‐Fe2+ (MD@Lip) has been developed, which can efficiently stimulate ROS‐mediated cancer cell apoptosis in vitro and in vivo. MD@Lip can not only improve aqueous solubility of octahedral MOF‐Fe2+, but also generate an acidic microenvironment to activate a MOF‐Fe2+‐based Fenton reaction. Importantly, MD@Lip promotes DCA‐mediated mitochondrial aerobic oxidation to increase intracellular hydrogen peroxide (H2O2), which can be consequently converted to highly cytotoxic hydroxyl radicals (?OH) via MOF‐Fe2+, leading to amplification of cancer cell apoptosis. Particularly, MD@Lip can selectively accumulate in tumors, and efficiently inhibit tumor growth with minimal systemic adverse effects. Therefore, liposome‐based combination therapy of DCA and MOF‐Fe2+ provides a promising oxidative stress–associated antitumor strategy for the management of malignant tumors.  相似文献   

17.
Although cancer immunotherapy has emerged as a tremendously promising cancer therapy method, it remains effective only for several cancers. Photoimmunotherapy (e.g., photodynamic/photothermal therapy) could synergistically enhance the immune response of immunotherapy. However, excessively generated immunogenicity will cause serious inflammatory response syndrome. Herein, biomimetic magnetic nanoparticles, Fe3O4‐SAS @ PLT, are reported as a novel approach to sensitize effective ferroptosis and generate mild immunogenicity, enhancing the response rate of non‐inflamed tumors for cancer immunotherapy. Fe3O4‐SAS@PLT are built from sulfasalazine (SAS)‐loaded mesoporous magnetic nanoparticles (Fe3O4) and platelet (PLT) membrane camouflage and triggered a ferroptotic cell death via inhibiting the glutamate‐cystine antiporter system Xc? pathway. Fe3O4‐SAS @ PLT‐mediated ferroptosis significantly improves the efficacy of programmed cell death 1 immune checkpoint blockade therapy and achieves a continuous tumor elimination in a mouse model of 4T1 metastatic tumors. Proteomics studies reveal that Fe3O4‐SAS @ PLT‐mediated ferroptosis could not only induce tumor‐specific immune response but also efficiently repolarize macrophages from immunosuppressive M2 phenotype to antitumor M1 phenotype. Therefore, the concomitant of Fe3O4‐SAS @ PLT‐mediated ferroptosis with immunotherapy are expected to provide great potential in the clinical treatment of tumor metastasis.  相似文献   

18.
Compactness and versatility of fiber‐based micro‐supercapacitors (FMSCs) make them promising for emerging wearable electronic devices as energy storage solutions. But, increasing the energy storage capacity of microscale fiber electrodes, while retaining their high power density, remains a significant challenge. Here, this issue is addressed by incorporating ultrahigh mass loading of ruthenium oxide (RuO2) nanoparticles (up to 42.5 wt%) uniformly on nanocarbon‐based microfibers composed largely of holey reduced graphene oxide (HrGO) with a lower amount of single‐walled carbon nanotubes as nanospacers. This facile approach involes (1) space‐confined hydrothermal assembly of highly porous but 3D interconnected carbon structure, (2) impregnating wet carbon structures with aqueous Ru3+ ions, and (3) anchoring RuO2 nanoparticles on HrGO surfaces. Solid‐state FMSCs assembled using those fibers demonstrate a specific volumetric capacitance of 199 F cm?3 at 2 mV s?1. Fabricated FMSCs also deliver an ultrahigh energy density of 27.3 mWh cm?3, the highest among those reported for FMSCs to date. Furthermore, integrating 20 pieces of FMSCs with two commercial flexible solar cells as a self‐powering energy system, a light‐emitting diode panel can be lit up stably. The current work highlights the excellent potential of nano‐RuO2‐decorated HrGO composite fibers for constructing micro‐supercapacitors with high energy density for wearable electronic devices.  相似文献   

19.
Improved conductivity and suppressed dissolution of lithium polysulfides is highly desirable for high‐performance lithium‐sulfur (Li‐S) batteries. Herein, by a facile solvent method followed by nitridation with NH3, a 2D nitrogen‐doped carbon structure is designed with homogeneously embedded Co4N nanoparticles derived from metal organic framework (MOF), grown on the carbon cloth (MOF‐Co4N). Experimental results and theoretical simulations reveal that Co4N nanoparticles act as strong chemical adsorption hosts and catalysts that not only improve the cycling performance of Li‐S batteries via chemical bonding to trap polysulfides but also improve the rate performance through accelerating the conversion reactions by decreasing the polarization of the electrode. In addition, the high conductive nitrogen‐doped carbon matrix ensures fast charge transfer, while the 2D structure offers increased pathways to facilitate ion diffusion. Under the current density of 0.1C, 0.5C, and 3C, MOF‐Co4N delivers reversible specific capacities of 1425, 1049, and 729 mAh g?1, respectively, and retains 82.5% capacity after 400 cycles at 1C, as compared to the sample without Co4N (MOF‐C) values of 61.3% (200 cycles). The improved cell performance corroborates the validity of the multifunctional design of MOF‐Co4N, which is expected to be a potentially promising cathode host for Li‐S batteries.  相似文献   

20.
Micrometer‐sized spherical aggregates of Sn and Co components containing core–shell, yolk–shell, hollow nanospheres are synthesized by applying nanoscale Kirkendall diffusion in the large‐scale spray drying process. The Sn2Co3–Co3SnC0.7–C composite microspheres uniformly dispersed with Sn2Co3–Co3SnC0.7 mixed nanocrystals are formed by the first‐step reduction of spray‐dried precursor powders at 900 °C. The second‐step oxidation process transforms the Sn2Co3–Co3SnC0.7–C composite into the porous microsphere composed of Sn–Sn2Co3@CoSnO3–Co3O4 core–shell, Sn–Sn2Co3@CoSnO3–Co3O4 yolk–shell, and CoSnO3–Co3O4 hollow nanospheres at 300, 400, and 500 °C, respectively. The discharge capacity of the microspheres with Sn–Sn2Co3@CoSnO3–Co3O4 core–shell, Sn‐Sn2Co3@CoSnO3–Co3O4 yolk–shell, and CoSnO3–Co3O4 hollow nanospheres for the 200th cycle at a current density of 1 A g?1 is 1265, 987, and 569 mA h g?1, respectively. The ultrafine primary nanoparticles with a core–shell structure improve the structural stability of the porous‐structured microspheres during repeated lithium insertion and desertion processes. The porous Sn–Sn2Co3@CoSnO3–Co3O4 microspheres with core–shell primary nanoparticles show excellent cycling and rate performances as anode materials for lithium‐ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号